Introduction to Machine Learning (and Notation)

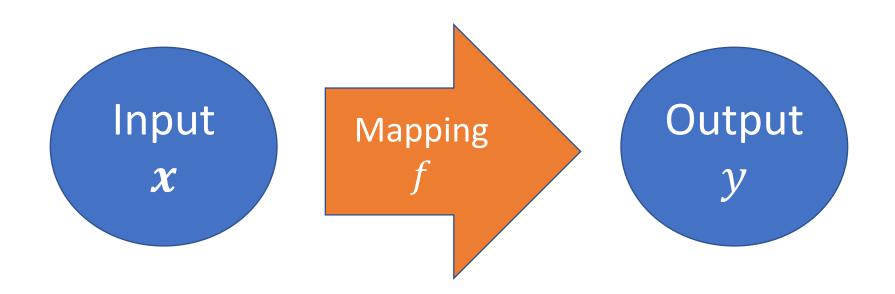
David I. Inouye

Friday, September 4, 2020

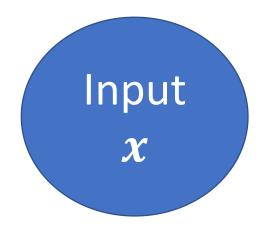
Outline

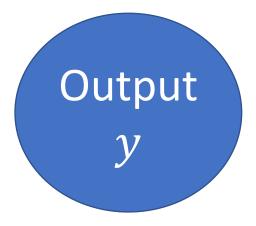
- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Dimensionality reduction (PCA)
 - Clustering
 - Generative models
- Other key concepts
 - Generalization
 - Curse of dimensionality
 - No free lunch theorem

The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output



The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output given only input-output examples



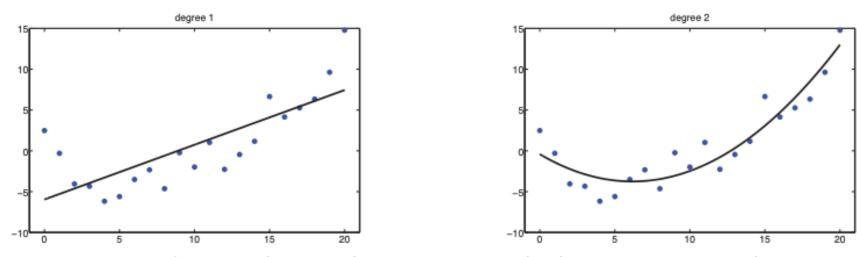


The set of input-output pairs is called a training set, denoted by $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$

ightharpoonup Input x_i

- Called <u>features</u> (ML), <u>attributes</u>, or <u>covariates</u> (Stats). Sometimes just <u>variables</u>.
- ► Can be numeric, categorical, discrete, or nominal.
- Examples
 - [height, weight, age, gender]
 - $[x_1, x_2, \cdots, x_d]$ A d-dimensional vector of numbers
 - ▶ Image
 - Email message
- Output y_i
 - Called <u>output</u>, <u>response</u>, or <u>target</u> (or <u>label</u>)
 - ▶ Real-valued/numeric output: e.g., $y_i \in \mathcal{R}$
 - ▶ Categorical, discrete, or nominal output: y_i from finite set, i.e., $y_i \in \{1,2,\dots,c\}$

If the output y_i is numeric, then the problem is known as <u>regression</u>



NOTE: Input x does not have to be numeric. Only the output y must be numeric.

- Given height x_i , predict age y_i
- Predict GPA given SAT score
- Predict SAT score given GPA
- Predict GRE given SAT and GPA

If output is <u>categorical</u>, then the problem is known as <u>classification</u>

• Given height x, predict "male" (y = 0) or "female" (y = 1)

• Given salary x_1 and mortgage payment x_2 , predict defaulting on loan ("yes" or "no")

predicted: cat

predicted: cat

predicted: dog

predicted: cat

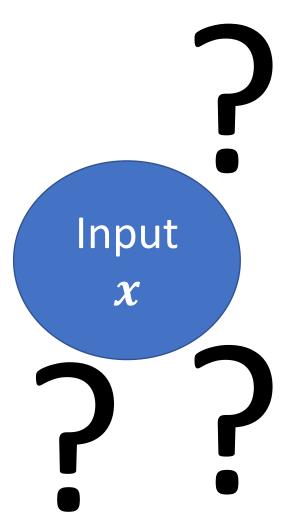
predicted: cat

predicted: dog

Side note: <u>Encoding / representing</u> a categorical variable can be done in many ways

- Suppose the categorical variable is "yes" and "no"
 - Canonical ways: "no" -> 0 and "yes -> 1
 - What are other possible encodings?
- What if there are more than two categories such as cats, dogs, fish and snakes?
- What is good and bad about using {1,2,3,4} for above example of animals?
- One-hot encoding is another common way

The goal of <u>unsupervised learning</u> is to model or understand the input data directly



Dimensionality reduction

Clustering

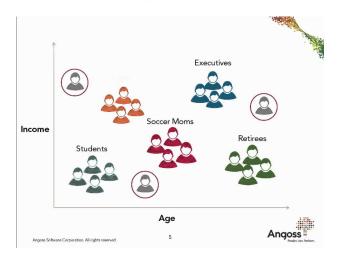
Generative models

"What I cannot create I do not understand"

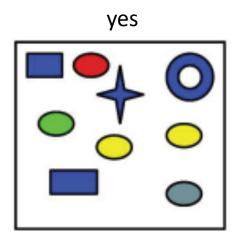
Richard Feynman

In unsupervised learning, the <u>training set</u> is only a set of input values $\mathcal{D} = \{x_i\}_{i=1}^n$

- ► [Dimensionality reduction] Estimate a single number that summarizes all variables of wealth (e.g. credit score)
- [Clustering] Estimate natural groups of customers
- ► [Generative Models] Estimate the distribution of normal transactions to detect fraud (anomalies)



Given this dataset, should we use supervised or unsupervised learning?



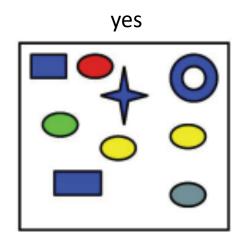
d features/attributes/covariates

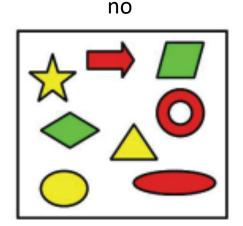
n samples/observations/examples

Color	Shape	Size (cm)	Is it good?
Blue	Square	10	yes
Red	Ellipse	2.4	yes
Red	Ellipse	20.7	no

no

The dataset cannot determine the task, rather the context determines the task



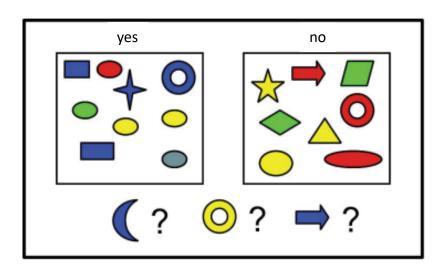


d features/attributes/covariates

n samples/observations/examples

Color	Shape	Size (cm)	Is it good?
Blue	Square	10	yes
Red	Ellipse	2.4	yes
Red	Ellipse	20.7	no

Generalization beyond the training set is the main goal of learning



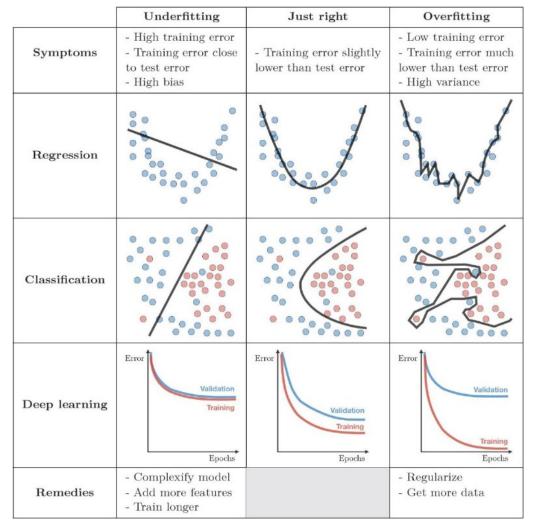
d features/attributes/covariates

n samples/observations/examples

Color Is it good? Shape Size (cm) Blue Square 10 yes x_1 y_1 Red Ellipse 2.4 yes y_2 20.7 Red Ellipse no

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

Generalization beyond the training set is the main goal of learning



Original source for figure unknown.

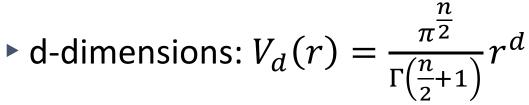
The curse of dimensionality is *unintuitive* Example: Most space is in the "corners"

Ratio between unit hypersphere to unit hypercube

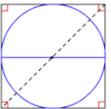
► 1D:
$$2/2 = 1$$

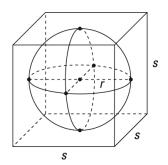
► 2D :
$$\frac{\pi'}{\frac{4}{4}}$$
 = 0.7854
► 3D : $\frac{\pi'}{\frac{4}{3}\pi}$ = 0.5238

$$ightharpoonup 3D: \frac{\overline{3}^{\pi}}{8} = 0.5238$$

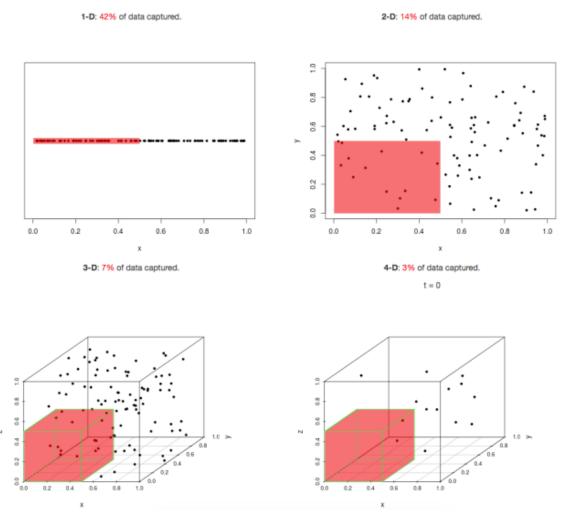


► Thus, for 10-D: 2.55/2^10 = 2.55/1024 = 0.00249





The <u>curse of dimensionality</u> is <u>unintuitive</u> The <u>number of points in ½ cube is very small</u>



https://eranraviv.com/curse-of-dimensionality/

The curse of dimensionality is *unintuitive*

Example: Need edge length to be 0.9 to capture 1/2 data samples in 10 dimensions

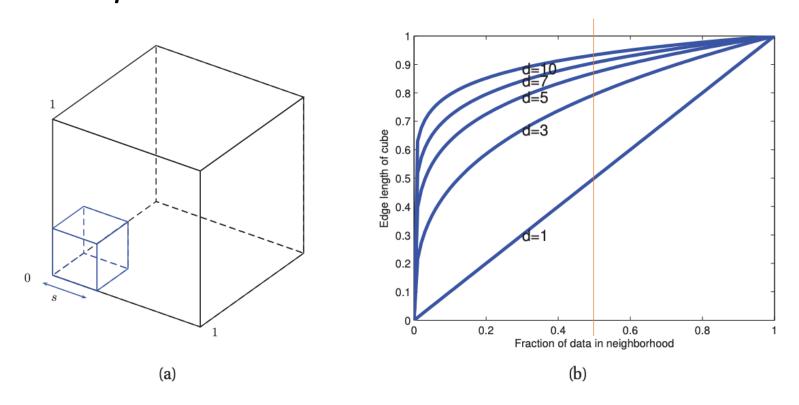
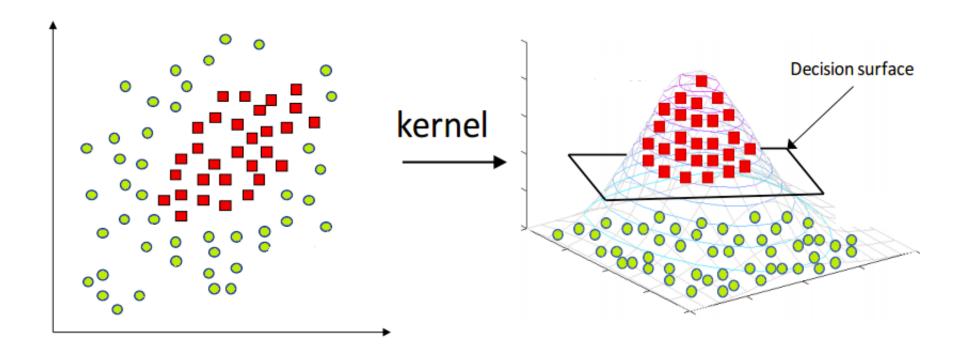


Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by curseDimensionality.

From Machine Learning: A Probabilistic Perspective, Kevin Murphy, 2012.

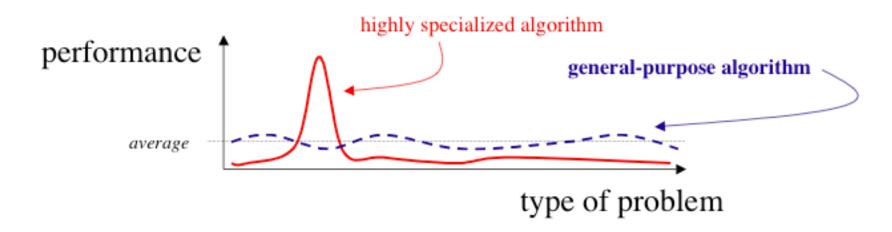
The "blessing" of dimensionality (more data generally doesn't hurt if you can ignore)



https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-tuning-python-r/

No Free Lunch Theorem ("All models are wrong, but some models are useful."*)

- All models are approximations
- All models make assumptions
- Assumptions are never perfect



^{*} George Box (Box and Draper 1987, page 424).