
In [1]: import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import neighbors, datasets
from sklearn.metrics import pairwise_distances
from sklearn.utils import shuffle

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features
X = X + 0.05 * np.random.RandomState(0).randn(*X.shape) # Add random noi
se since iris has exact values
y = iris.target
X, y = shuffle(X, y, random_state=0)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='rainbow')
print(X.shape)

(150, 2)

In [2]: class SimpleKNNClassifier():
 def __init__(self, X_train, y_train, k=1):
 self.X_train = X_train
 self.y_train = y_train
 self.k = k

 def predict(self, X):
 # Compute distances
 D = np.nan * np.ones((X.shape[0], self.X_train.shape[0]))
 for i, x in enumerate(X):
 for j, xt in enumerate(self.X_train):
 D[i, j] = np.linalg.norm(x-xt)
 # Much faster vectorized version using sklearn's pairwise distan
ces function
 D2 = pairwise_distances(X, self.X_train, metric='euclidean')
 assert np.allclose(D, D2), 'Should be the same'

 # Get the indices of the top k smallest distances
 sorted_idx = np.argsort(D, axis=1)

 # For each data point get mode
 y = np.array([
 scipy.stats.mode(self.y_train[sidx[:self.k]])[0][0]
 for sidx in sorted_idx
])
 # Faster vectorized version
 y_ind = self.y_train[sorted_idx[:,:self.k]]
 y2 = scipy.stats.mode(y_ind, axis=1)[0].ravel()
 assert np.all(y == y2), 'Should be the same'
 return y

k = 1 #3 or 10
knn = SimpleKNNClassifier(X, y, k=k)
y_pred = knn.predict(X)
accuracy = np.mean(y == y_pred)
print(f'The accuracy on the training data for k={k} is: {accuracy*100:.1
f}%')

This seems odd, do we really think our method has PERFECT
accuracy?

Suppose we only had 100 points for training and then received 50
new flower measurments

The accuracy on the training data for k=1 is: 100.0%

In [3]: # Use first 100 points
X_train = X[:100,:]
y_train = y[:100]

Setup model
for k in [1, 3, 5, 7, 9, 12]:
 knn = SimpleKNNClassifier(X_train, y_train, k=k)

 # Predict on training data
 y_pred = knn.predict(X_train)
 accuracy = np.mean(y_train == y_pred)
 print(f'The accuracy on the training data for k={k} is: {accuracy*10
0:.1f}%')

 # Now let's test our method on the new flowers
 X_new = X[100:,:]
 y_new = y[100:]
 y_pred = knn.predict(X_new)
 accuracy = np.mean(y_new == y_pred)
 print(f'The accuracy on the new data for k={k} is: {accuracy*100:.1
f}%\n')

The above generalization accuracy estimation algorithm
is known as using a train/test split

Cross validation is a better estimate of generalization
accuracy

The accuracy on the training data for k=1 is: 100.0%
The accuracy on the new data for k=1 is: 72.0%

The accuracy on the training data for k=3 is: 83.0%
The accuracy on the new data for k=3 is: 74.0%

The accuracy on the training data for k=5 is: 83.0%
The accuracy on the new data for k=5 is: 78.0%

The accuracy on the training data for k=7 is: 82.0%
The accuracy on the new data for k=7 is: 80.0%

The accuracy on the training data for k=9 is: 82.0%
The accuracy on the new data for k=9 is: 82.0%

The accuracy on the training data for k=12 is: 83.0%
The accuracy on the new data for k=12 is: 82.0%

In [4]: def cv_estimate(X, k, n_splits=3):
 # Setup split indices
 split_ind = np.floor(np.linspace(0, X.shape[0], num=n_splits+1))
 # Loop over splits
 accuracy_list = []
 for split_start, split_end in zip(split_ind[:-1], split_ind[1:]):
 # Setup boolean array to select test set
 test = np.zeros(X.shape[0], dtype=bool) # Initialize false bool
ean array
 test[int(split_start):int(split_end)] = True # Set test element
s to true

 # Create train and test sets
 X_train = X[~test, :] # ~ is used to denote "not" for all boolea
n values
 y_train = y[~test]
 X_test = X[test, :]
 y_test = y[test]

 # Train model for this split using X_train and y_train
 knn = SimpleKNNClassifier(X_train, y_train, k=k)

 # Compute accuracy on test split
 y_pred = knn.predict(X_test)
 accuracy = np.mean(y_test == y_pred)
 accuracy_list.append(accuracy)
 # Take mean of accuracy
 return np.mean(accuracy_list)

for k in [1, 3, 5, 7, 9, 12]:
 # n_splits is often 3, 5, 10; X.shape[0] (i.e., one split per sampl
e) is known as Leave One Out (LOO)
 cv_acc = cv_estimate(X, k, n_splits=3)
 print(f'CV accuracy estimate for k={k} is {100*cv_acc:.1f}%')

CV accuracy estimate for k=1 is 74.7%
CV accuracy estimate for k=3 is 76.0%
CV accuracy estimate for k=5 is 76.7%
CV accuracy estimate for k=7 is 78.0%
CV accuracy estimate for k=9 is 77.3%
CV accuracy estimate for k=12 is 76.0%

