K-Nearest Neighbors (and Evaluating ML Methods)

David I. Inouye
Thursday, September 10, 2020
Outline

- KNN intuition and simple algorithm
- Evaluating methods (i.e., generalization error)
 - Train vs test data
 - Cross validation
- Hyperparameter tuning (choosing k)
- Curse of dimensionality revisited
K-nearest neighbors (KNN) is a very simple and intuitive supervised learning algorithm

1. Find the k nearest neighbors
 ▶ Equivalently, expand circle until it includes k points

2. Select most common class

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
The naïve KNN algorithm requires computing the distance to all training points

Input: Test point x_0, training data $\{x_i, y_i\}_{i=1}^n$
Output: Predicted class y_0

1. Compute distance to all training points:
 $$d_i = d(x_0, x_i), \forall i$$

2. Sort distances where π is a permutation:
 (e.g., $\pi(1)$ is the index of the closest point)
 $$d_{\pi(1)} \leq d_{\pi(2)} \leq \cdots \leq d_{\pi(n)}$$

3. Return the most common class of the top k
 $$y_0 = \text{mode} \{y_{\pi(j)}\}_{j=1}^k$$
1-NN partitions the space into Voronoi cells based on the training data

http://scott.fortmann-roe.com/docs/BiasVariance.html
The KNN boundary gets “smoother” as k increases

1-nearest neighbours

20-nearest neighbours

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
How should method performance be estimated?

- Demo on using KNN with training data
How should method performance be estimated? It should be evaluated on unseen test data

- If we train and evaluate on the same data, the model may not generalize well.

- Analogy to class
 - *Training data* is like homeworks, sample problems, and sample exams
 - *Testing data* is like the real exam
We actually care about the method’s performance on **new unseen data**

Data we have
- **Medical domain**
 - Disease records for past patients
- **Photos domain**
 - Human-labeled images
- **Business domain**
 - Historical stock prices

What we want
- **Medical domain**
 - Predict disease for **new patients**
- **Photos domain**
 - Predict object in **new photos**
- **Business domain**
 - Predict **future stock prices**
Estimating \textit{generalization} on unseen data is important for model evaluation and model selection.

1. Model evaluation
 ▶ Is the model accurate enough to deploy?
 ▶ Example: The business department may decide that the ML predictions will be worthwhile if the accuracy in the real world is above 90% on average.

2. Model selection
 ▶ Which of many possible models should be used?
 ▶ Example: Which value of k is best for KNN?
Generalization error measures how much error the model makes on unseen data

- How do we measure generalization error since (by definition) we don’t have new unseen data?

Act like we do! 😊
Generalization error can be estimated by splitting the known dataset

- **Split the dataset**

1. The training dataset is used to estimate the model

2. The test dataset (or held-out dataset) is used to estimate generalization error.

- 8.4% classification error
Cross-validation (CV) generalizes the simple train/test split to \(k \) disjoint splits (effectively reusing data)

- Repeat the split process \(k \) times
 - Fit new model on train
 - Evaluate model on test

- Note: \(k \) models are fitted throughout process

- Final error estimate is average over all folds

\[k = 3, k = 5, k = 10 \text{ are common} \]
Generalization error via CV can aid in **model selection** (or hyperparameter selection)

1. Run CV (to estimate generalization) for multiple k

 ![Diagram showing CV process for $k = 1$, $k = 3$, $k = 5$, and $k = 7$.]

2. Choose k^* whose CV performance is the best

 $$k^* = \arg \min_k \text{CVGenError}(k; X)$$

3. For final model, train model with all data using k^*
Demo of using cross validation for KNN
But what if we want to select a model AND estimate the model’s performance?

- Inception!
- Nested train/test split (most common)

![Diagram showing nested train/test split and cross-validation stages](image)

- Top-level Training: Used for training model during model selection
- Lower-level Training: Used for selecting model (e.g., hyperparameter selection)
- Validation: Used for estimating performance
- Test: Used for estimating performance

- Nested CV (better but more expensive)
Real-world caveat: Even CV performance estimates are only good if **real-world distribution** is like the training data

- Training images in the daytime, but real-world images may be at night

- Training based on historical court cases that are biased against minorities, but real-world court cases should be unbiased

- Training based on historical stock market data, but real-world stock market has changed
Okay, back to KNN... 😊
KNN regression can be used to predict continuous values

1. Find k nearest neighbors
2. Predict average of k nearest neighbors (possibly weighted by distance)

https://medium.com/analytics-vidhya/k-neighbors-regression-analysis-in-python-61532d56d8e4
The performance and intuitions of KNN degrade significantly in high dimensions (revisiting the curse of dimensionality)

- The distances between **any two points** in high dimensions is nearly the same

Distance between two random points concentrate around a single value

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
Solution 1: Reduce the dimensionality and then use KNN

Fig. 3. (A) The two-dimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. (B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization, see (8).

Solution 2 (non-KNN): Compute distance to hyperplane instead

Distance to hyperplane is **constant** but pairwise distances between points grows as dimensionality increase.

How do we compute distance to hyperplane?

Dot product with unit normal vector plus constant!

\[x^T n + c \]

One view of linear classifiers: 1D projection and then classification

Excellent illustrations from: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
Related reading and source for KNN curse of dimensionality illustrations

▸ https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html