
Invertible Normalizing Flows
ECE57000: Artificial Intelligence

David I. Inouye

David I. Inouye 0

GAN Limitation:
Cannot compute density values

▸Evaluation of GANs is challenging
▸Explicit density models could use test log likelihood
▸“I think this looks better than that”

▸Inception-based scores

▸Cannot use for classification or outlier detection
David I. Inouye 1

GAN Limitation: Challenging to train because of
careful balance between discriminator and generator

1. Assumptions on possible 𝐷 and 𝐺
1. Theory – All possible 𝐷 and 𝐺
2. Reality – Only functions defined by a neural network

2. Assumptions on optimality
1. Theory – Both optimizations are solved perfectly
2. Reality – The inner maximization is only solved

approximately, and this interacts with outer minimization
3. Assumption on expectations

1. Theory – Expectations over true distribution
2. Reality – Empirical expectations over finite sample; for

images, much of the high-dimensional space does not have
samples

▸GANs can be very difficult/finicky to train

David I. Inouye 2

Common problem with GANs: Mode collapse
hinders diversity of samples

▸Wasserstein GANs

▸Unrolled GANs
▸Trained on multiple

discriminators simultaneously

David I. Inouye 3

From: https://developers.google.com/machine-learning/gan/problems

http://papers.nips.cc/paper/6923-veegan-reducing-mode-
collapse-in-gans-using-implicit-variational-learning.pdf

https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163.

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

GAN Limitation: Cannot go from observed to
latent space, i.e. 𝑥 → 𝑧 not possible/easy

▸Cannot manipulate an observed image in latent
space
▸Cannot do the following, 𝑥 → 𝑧, 𝑧! = 𝑧 + 3, 𝑧! → 𝑥!
▸Rather, must start from fake image based on random
𝑧

David I. Inouye 4

All fake
images->

Highly realistic random samples from powerful
flow model (GLOW)

David I. Inouye 5

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Interpolation between real images using GLOW

David I. Inouye 6

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Transformations of real image along various
features

David I. Inouye 7

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Normalizing flows use invertible deep models for
the generator which allow more capabilities

▸Transforming between observed/input and latent
space is easy
▸𝑥 = 𝐺 (𝑧)
▸𝑧 = 𝐺!"(𝑥)

▸Simple sampling like GANs
▸𝑧 ∼ SimpleDistribution
▸𝑥 = 𝐺 𝑧 ∼ 𝑝̂# 𝑥 , which is estimated distribution

▸Exact density is computable via change of variables
▸Standard maximum likelihood estimation can be used for

training

David I. Inouye 8

Comparing VAEs and normalizing flows

David I. Inouye 9

𝐺 = 𝐹!"

𝑧#

#𝑥! = 𝐺 𝐹 𝑥!
= 𝐺 𝐺"# 𝑥! = 𝑥!

⇒ 𝐿 𝑥!, #𝑥! = 𝐿 𝑥!, 𝑥! = 0

Normalizing
Flow

𝐹 = 𝐺!"

𝑥#

𝐹 𝐺

𝑧#𝑥# #𝑥! ∼ 𝑝 𝑥! 𝐺 𝑧!

𝐿 𝑥# , (𝑥#
VAE

Implicit generator via G = 𝐹!"
(only need to train encoder 𝐹)

Latent code has same dimensionality as input
(no dimensionality reduction)

Comparing GANs and normalizing flows:
Normalizing flows can use MLE training

David I. Inouye 10

𝐺

𝑧# #𝑥! = 𝐺 𝑧!

Adversarial	training	to	
compare	two	sets	of	
samples

GAN

𝐺 = 𝐹!"

𝑧#
Normalizing
Flow

𝐹 = 𝐺!"

𝑥# #𝑥! = 𝐺 𝑧!
= 𝐺 𝐺"# 𝑥! = 𝑥!

MLE	training	since	
density	function	known

Latent code has same dimensionality as input
(no dimensionality reduction)

Back to maximum likelihood estimation (MLE):
How can we compute the likelihood
for normalizing flows?

▸Suppose
▸𝑧 ∼ Uniform 0,1 , i. e. , 𝑝% 𝑧 = 1

(latent space is uniform)
▸𝐺 z = 2z
▸Thus, 𝑥 = 𝐺 𝑧 = 2𝑧.

▸What is the density function of 𝑥, what is
𝑝$ 𝑥 ?

David I. Inouye 11

Change of variables formula gives 𝑝G in terms of
the 𝑝H and the derivative of 𝐺IJ

▸Key idea: Must conserve density volume (so
that distribution sums to 1).
▸𝑝$ 𝑥 𝑑𝑥 = 𝑝% 𝑧 𝑑𝑧 , this is like the
preservation of volume/area/mass.
▸Intuition: We only have 1 unit of “dirt” to move

around.
▸Rearrange above equation to get formula

𝑝$ 𝑥 =
𝑑𝑧
𝑑𝑥

𝑝% 𝑧 =
𝑑𝐺!" 𝑥
𝑑𝑥

𝑝% 𝐺!" 𝑥

David I. Inouye 12

Demo of change of variables

David I. Inouye 13

Derivation of change of variables
using CDF function (Increasing)

▸Assume 𝑥 = 𝐺 𝑧 ,	where 𝐺 𝑧 is	an	increasing	function
▸𝐹! 𝑎 = Pr 𝑥 ≤ 𝑎 = ∫"#

$ 𝑝! 𝑡 𝑑𝑡
▸𝐹! 𝑎 = Pr 𝑥 ≤ 𝑎
▸= Pr 𝐺 𝑧 ≤ 𝑎
▸= Pr 𝑧 ≤ 𝐺"% 𝑎 = 𝐹& 𝐺"% 𝑎
▸Now take the derivative of both sides with respect to 𝑎

▸Left hand side: '(! $
'$

= 𝑝! 𝑎

▸Right hand side:
'(")#$ $

'$
=

'(")#$ $

')#$ $
')#$ $

'$

▸= 𝑝& 𝐺"% 𝑎
')#$ $

'$

▸⇒ 𝑝! 𝑎 = 𝑝& 𝐺"% 𝑎
')#$ $

'$

▸You can do similarly for decreasing functions to get: 𝑝! 𝑎 = 𝑝& 𝐺"% 𝑎
')#$ $

'$

David I. Inouye 14

Inverse transform sampling
is based on change of variables

▸𝑧 ∼ Uniform 0,1
▸𝑣 ∼ AnotherDistribution
▸𝑥 = 𝐹&!" 𝑧 , where 𝐹&!" is the
inverse CDF for 𝑣
▸What is the distribution of 𝑥?

▸𝑝$ 𝑥 = 𝑝% 𝐹& 𝑥
'($ $
'$

▸𝑝$ 𝑥 = 1 𝑝& 𝑥 = 𝑝& 𝑥

David I. Inouye 16

𝐹*"% 𝑧

𝑧

𝑥

10

What about change of variables
in higher dimensions?

▸Let’s again build a little intuition (see demo)
▸Again, conservation of volume: Consider
infinitesimal expansion or shrinkage of volume

p 𝑥", 𝑥) 𝑑𝑥"𝑑𝑥) = 𝑝 𝑧", 𝑧) 𝑑𝑧"𝑑𝑧)
▸Given that Jacobian is all mixed derivatives we
get generalization for vector to vector invertible
functions:

𝑝$ 𝑥 = det 𝐽*%& 𝑥 𝑝% 𝐺!" 𝑥

David I. Inouye 17

What is the Jacobian again?
The best linear approximation at a point

▸The Jacobian definition:

𝑑𝑧
𝑑𝑥

= 𝐽C 𝑥 =

𝜕𝑧#
𝜕𝑥#

⋯
𝜕𝑧#
𝜕𝑥D

⋮ ⋱ ⋮
𝜕𝑧D
𝜕𝑥#

⋯
𝜕𝑧D
𝜕𝑥D

=

𝜕𝐺"# 𝑥 #
𝜕𝑥#

⋯
𝜕𝐺"# 𝑥 #
𝜕𝑥D

⋮ ⋱ ⋮
𝜕𝐺"# 𝑥 D

𝜕𝑥#
⋯

𝜕𝐺"# 𝑥 D
𝜕𝑥D

▸The determinant measures the local linear
expansion or shrinkage around a point

David I. Inouye 18

The determinant Jacobian of compositions of
functions is the product of determinant Jacobians

▸Suppose 𝐹 𝑥 = 𝐹) 𝐹" 𝑥
▸The Jacobian expands like the chain rule

𝐽(𝑥 = 𝐽() 𝐹" 𝑥 𝐽(& 𝑥 = 𝐽('𝐽(&
▸If we take the determinant of the Jacobian, then
it becomes a product of determinants

det 𝐽(= det 𝐽('𝐽(& = det 𝐽(' det 𝐽(&
▸This will be useful since each layer of our flows
will be invertible

David I. Inouye 20

Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for
each layer

▸Simply optimize the minimize negative log
likelihood where 𝐹! = 𝐺"#

argmin
$E

−
1
𝑛
-
%

log 𝑝& 𝑥%; 𝜃

▸− &
'
∑(log 𝑝% 𝐹) 𝑥(det 𝐽*! 𝑥(

▸− &
'
∑(log 𝑝% 𝐹) 𝑥(+ log det 𝐽*! 𝑥(

▸− &
'
∑(log 𝑝% 𝐹) 𝑥(+ ∑ℓ log det 𝐽*!ℓ

𝑧(
ℓ,&

where 𝑧(- = 𝑥(, and 𝑧(ℓ = 𝐹)
ℓ 𝑧(ℓ,&

David I. Inouye 21

How do we create these invertible layers?

▸Consider arbitrary invertible transformation 𝐹+
▸How often would det 𝐽*! need to be computed?

▸High computation costs
▸Determinant costs roughly 𝑂 𝑑. even if Jacobian is

already computed!
▸Would need to be computed every stochastic

gradient iteration

David I. Inouye 22

How do we create these invertible layers?
Independent transformation on each dimension

▸𝑧" = 𝐹"(𝑥")
▸𝑧) = 𝐹)(𝑥))
▸𝑧, = 𝐹,(𝑥,)
▸What is the Jacobian?

𝐽(=

𝑑𝐹% 𝑥%
𝑑𝑥%

0 0

0
𝑑𝐹+ 𝑥+
𝑑𝑥+

0

0 0
𝑑𝐹, 𝑥,
𝑑𝑥,

David I. Inouye 23

How do we create these invertible layers?
Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(in	parallel)
▸𝑧! = 𝐹! 𝑥!
▸𝑧" = 𝐹" 𝑥"|𝑥!
▸𝑧# = 𝐹# 𝑥#|𝑥!, 𝑥"

▸Inverse – Sampling (conditioned on 𝑥 so must be sequential)
▸𝑥! = 𝐹!$! 𝑧!
▸𝑥" = 𝐹"$! 𝑧"|𝑥!
▸𝑥# = 𝐹#$! 𝑧#|𝑥!, 𝑥"

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽% =

&%-
&'-

0 0
&%.
&'-

&%.
&'.

0
&%/
&'-

&%/
&'.

&%/
&'/

David I. Inouye 24

Rezende, D., & Mohamed, S. (2015, June). Variational Inference with
Normalizing Flows. In International Conference on Machine Learning (pp.
1530-1538).

How do we create these invertible layers?
Inverse Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(sequential)
▸𝑧! = 𝐹! 𝑥!
▸𝑧" = 𝐹" 𝑥"|𝑧!
▸𝑧# = 𝐹# 𝑥#|𝑧!, 𝑧"

▸Inverse – Sampling (parallel)
▸𝑥! = 𝐹!$! 𝑧!
▸𝑥" = 𝐹"$! 𝑧"|𝑧!
▸𝑥# = 𝐹#$! 𝑧#|𝑧!, 𝑧"

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽% =

&%-
&'-

0 0
&%.
&'-

&%.
&'.

0
&%/
&'-

&%/
&'.

&%/
&'/

David I. Inouye 25

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In Advances in
neural information processing systems (pp. 4743-4751).

Scale-and-shift simple form of invertible functions
(MAF https://arxiv.org/pdf/1705.07057.pdf)

▸Forward	– Density	estimation	(parallel)
▸𝑧! = exp(𝛼!)𝑥! + 𝜇!
▸𝑧" = exp(𝛼")𝑥" + 𝜇", 𝛼" = 𝑓" 𝑥! , 𝜇" = 𝑔"(𝑥!)
▸𝑧# = exp(𝛼#)𝑥# + 𝜇#, 𝛼# = 𝑓# 𝑥!, 𝑥" , 𝜇# = 𝑔#(𝑥!, 𝑥")

▸What is the Jacobian and determinant?

𝐽(=

exp(𝛼") 0 0
'%'
'$&

exp 𝛼) 0
'%(
'$&

'%(
'$'

exp 𝛼,

David I. Inouye 26

https://arxiv.org/pdf/1705.07057.pdf

Coupling layers allow parallel
density estimation and sampling

▸Keep some set of features fixed and transform
others
▸𝑧&:(,& = 𝑥&:(,&
▸𝑧(:0 = exp 𝑓 𝑥&:(,& ⨀ 𝑥(:0 + 𝑔 𝑥&:(,&

▸Reverse or shuffle coordinates and repeat
▸What is Jacobian?

𝐽(=
𝐼 0

𝐽-./00 diag exp 𝑓 𝑥":#!"

David I. Inouye 27

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

The squeeze operation trades off between spatial
and channel dimensions

David I. Inouye 28

Squeeze

H x W x C H/2 x W/2 x 4C
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

Checkboard or channel-wise masking can be used to
separate fixed and non-fixed set of variables

David I. Inouye 29

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

White are fixed, i.e., 𝑥!:%&!, and black are transformed, 𝑥%:'.

Hierarchical factorization is like an invertible
dimensionality reduction method

David I. Inouye 30

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

▸After each block, half
of the dimensions are
fixed and the rest pass
through more
transformations

▸Intuitively, the
important part of the
signal propagates
deeper

GLOW: Convolutional flows
1 x 1 invertible convolutions are like
fully connected layers for each pixel

David I. Inouye 31

▸Image tensor: h × 𝑤 × 𝑐
▸If we use 𝑐 filters than we map from a h × 𝑤 × 𝑐 to another h × 𝑤 × 𝑐

image
▸The number of parameters is a matrix 𝑊 ∈ ℝ(×(
▸1x1 convolutions can be seen as a linear transform along the channel

dimension (mixes the channel dimensions)

(*) =

Highly realistic random samples from powerful
flow model (GLOW)

David I. Inouye 32

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Similar concepts can be used to generate realistic
audio (WaveGlow)

▸Listen to some examples
https://nv-adlr.github.io/WaveGlow

▸Very similar concepts for audio generation

David I. Inouye 33

https://nv-adlr.github.io/WaveGlow

