Invertible Normalizing Flows

ECE57000: Artificial Intelligence
David I. Inouye
GAN Limitation:
Cannot compute density values

- Evaluation of GANs is challenging
 - Explicit density models could use test log likelihood
 - “I think this looks better than that”

- Inception-based scores

- Cannot use for classification or outlier detection
GAN Limitation: Challenging to train because of careful balance between discriminator and generator

1. Assumptions on possible D and G
 1. Theory – All possible D and G
 2. Reality – Only functions defined by a neural network

2. Assumptions on optimality
 1. Theory – Both optimizations are solved perfectly
 2. Reality – The inner maximization is only solved approximately, and this interacts with outer minimization

3. Assumption on expectations
 1. Theory – Expectations over true distribution
 2. Reality – Empirical expectations over finite sample; for images, much of the high-dimensional space does not have samples

- GANs can be very difficult/finicky to train
Common problem with GANs: **Mode collapse** hinders diversity of samples

From: https://developers.google.com/machine-learning/gan/problems

- **Wasserstein GANs**
- **Unrolled GANs**
 - Trained on multiple discriminators simultaneously

(f) True Data
(g) GAN

[Links and images provided]

GAN Limitation: Cannot go from observed to latent space, i.e. $x \rightarrow z$ not possible/easy

- Cannot manipulate an observed image in latent space
 - Cannot do the following, $x \rightarrow z, \ z' = z + 3, \ z' \rightarrow x'$
 - Rather, must start from fake image based on random z

All fake images->
Highly realistic random samples from powerful flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method, and Section 5 for more results.
Interpolation between **real images** using GLOW

Figure 5: Linear interpolation in latent space between real images.
Transformations of real image along various features

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an image along a vector corresponding to the attribute, with the middle image being the original image.
Normalizing flows use invertible deep models for the generator which allow more capabilities

- Transforming between observed/input and latent space is easy
 - $x = G(z)$
 - $z = G^{-1}(x)$

- Simple sampling like GANs
 - $z \sim \text{SimpleDistribution}$
 - $x = G(z) \sim \hat{p}_g(x)$, which is estimated distribution

- Exact density is computable via change of variables
 - Standard maximum likelihood estimation can be used for training
Comparing VAEs and normalizing flows

\[
G = F^! \quad \Rightarrow \quad L(x_i, \tilde{x}_i) = L(x_i, x_i) = 0
\]

VAE

Latent code has **same** dimensionality as input (no dimensionality reduction)

Normalizing Flow

Implicit generator via \(G = F^{-1} \) (only need to train encoder \(F \))

\[
\tilde{x}_i = G(F(x_i)) = G(G^{-1}(x_i)) = x_i
\]
Comparing GANs and normalizing flows: Normalizing flows can use MLE training

GAN

$$\tilde{x}_i = G(z_i)$$

Adversarial training to compare two sets of samples

Normalizing Flow

$$\tilde{x}_i = G(z_i) = G(G^{-1}(x_i)) = x_i$$

MLE training since density function known

Latent code has same dimensionality as input (no dimensionality reduction)
Back to maximum likelihood estimation (MLE): How can we compute the likelihood for normalizing flows?

▸ Suppose
 ▸ \(z \sim \text{Uniform}(0,1) \), i.e., \(p_z(z) = 1 \) (latent space is uniform)
 ▸ \(G(z) = 2z \)
 ▸ Thus, \(x = G(z) = 2z \).

▸ What is the density function of \(x \), what is \(p_x(x) \)?
Change of variables formula gives p_x in terms of the p_z and the derivative of G^{-1}

- Key idea: Must conserve density volume (so that distribution sums to 1).

- $p_x(x)|dx| = p_z(z)|dz|$, this is like the preservation of volume/area/mass.
 - Intuition: We only have 1 unit of “dirt” to move around.

- Rearrange above equation to get formula

\[
p_x(x) = \left| \frac{dz}{dx} \right| p_z(z) = \left| \frac{dG^{-1}(x)}{dx} \right| p_z(G^{-1}(x))
\]
Demo of change of variables
Derivation of change of variables using CDF function (Increasing)

• Assume \(x = G(z) \), where \(G(z) \) is an increasing function

\[
F_x(a) = \Pr(x \leq a) = \int_{-\infty}^{a} p_x(t)dt
\]

\[
F_x(a) = \Pr(x \leq a)
\]

\[
= \Pr(G(z) \leq a)
\]

\[
= \Pr(z \leq G^{-1}(a)) = F_z(G^{-1}(a))
\]

• Now take the derivative of both sides with respect to \(a \)

Left hand side: \(\frac{dF_x(a)}{da} = p_x(a) \)

Right hand side: \(\frac{dF_z(G^{-1}(a))}{da} = \frac{dF_z(G^{-1}(a))}{d(G^{-1}(a))} \left(\frac{dG^{-1}(a)}{da} \right) \)

\[
= p_z(G^{-1}(a)) \left(\frac{dG^{-1}(a)}{da} \right)
\]

\(\Rightarrow p_x(a) = p_z(G^{-1}(a)) \left(\frac{dG^{-1}(a)}{da} \right) \)

You can do similarly for decreasing functions to get: \(p_x(a) = p_z(G^{-1}(a)) \left| \frac{dG^{-1}(a)}{da} \right| \)
Inverse transform sampling is based on change of variables

- $z \sim \text{Uniform}([0,1])$
- $v \sim \text{AnotherDistribution}$
- $x = F_v^{-1}(z)$, where F_v^{-1} is the inverse CDF for v
- What is the distribution of x?
 - $p_x(x) = p_z(F_v(x)) \left| \frac{dF_v(x)}{dx} \right|
 - $p_x(x) = (1)|p_v(x)| = p_v(x)$
What about change of variables in higher dimensions?

▸ Let’s again build a little intuition (see demo)
▸ Again, conservation of volume: Consider infinitesimal expansion or shrinkage of volume

\[p(x_1, x_2) |dx_1 dx_2| = p(z_1, z_2) |dz_1 dz_2| \]

▸ Given that Jacobian is all mixed derivatives we get generalization for vector to vector invertible functions:

\[p_x(x) = |\det J_{G^{-1}}(x)| p_z(G^{-1}(x)) \]
What is the Jacobian again?
The best linear approximation at a point

- **The Jacobian definition:**
 \[
 \frac{dz}{dx} = J_z(x) = \begin{bmatrix}
 \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_d} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial z_d}{\partial x_1} & \cdots & \frac{\partial z_d}{\partial x_d}
\end{bmatrix} = \begin{bmatrix}
 \frac{\partial G^{-1}(x)_1}{\partial x_1} & \cdots & \frac{\partial G^{-1}(x)_1}{\partial x_d} \\
 \vdots & \ddots & \vdots \\
 \frac{\partial G^{-1}(x)_d}{\partial x_1} & \cdots & \frac{\partial G^{-1}(x)_d}{\partial x_d}
\end{bmatrix}
\]

- The determinant measures the local *linear* expansion or shrinkage around a point.
The determinant Jacobian of compositions of functions is the product of determinant Jacobians

- Suppose \(F(x) = F_2(F_1(x)) \)
- The Jacobian expands like the chain rule
 \[
 J_F(x) = J_{F_2}(F_1(x))J_{F_1}(x) = J_{F_2}J_{F_1}
 \]
- If we take the determinant of the Jacobian, then it becomes a product of determinants
 \[
 \det J_F = \det J_{F_2}J_{F_1} = (\det J_{F_2})(\det J_{F_1})
 \]
- This will be useful since each layer of our flows will be invertible
Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for each layer

▶ Simply optimize the minimize negative log likelihood where $F_\theta = G^{-1}$

$$\arg \min_{F_\theta} -\frac{1}{n} \sum_i \log p_x(x_i; \theta)$$

▶ $-\frac{1}{n} \sum_i \log p_z(F_\theta(x_i)) |\det J_{F_\theta}(x_i)|$

▶ $-\frac{1}{n} \sum_i \left[\log p_z(F_\theta(x_i)) + \log|\det J_{F_\theta}(x_i)| \right]$

▶ $-\frac{1}{n} \sum_i \left[\log p_z(F_\theta(x_i)) + \sum_\ell \log |\det J_{F_\theta}(\ell) (z_{i}^{\ell-1})| \right]$

where $z_i^0 = x_i$, and $z_i^\ell = F_\theta^{(\ell)}(z_i^{\ell-1})$
How do we create these invertible layers?

- Consider arbitrary invertible transformation F_θ
 - How often would $|\det J_{F_\theta}|$ need to be computed?

- High computation costs
 - Determinant costs roughly $O(d^3)$ even if Jacobian is already computed!
 - Would need to be computed every stochastic gradient iteration
How do we create these invertible layers? Independent transformation on each dimension

- $z_1 = F_1(x_1)$
- $z_2 = F_2(x_2)$
- $z_3 = F_3(x_3)$

What is the Jacobian?

\[
J_F = \begin{bmatrix}
\frac{dF_1(x_1)}{dx_1} & 0 & 0 \\
0 & \frac{dF_2(x_2)}{dx_2} & 0 \\
0 & 0 & \frac{dF_3(x_3)}{dx_3}
\end{bmatrix}
\]
How do we create these invertible layers?

Autoregressive Flows based on chain rule

- **Forward - Density estimation (in parallel)**
 - \(z_1 = F_1(x_1) \)
 - \(z_2 = F_2(x_2|x_1) \)
 - \(z_3 = F_3(x_3|x_1, x_2) \)

- **Inverse – Sampling (conditioned on \(x \) so must be sequential)**
 - \(x_1 = F_1^{-1}(z_1) \)
 - \(x_2 = F_2^{-1}(z_2|x_1) \)
 - \(x_3 = F_3^{-1}(z_3|x_1, x_2) \)

- **What is the Jacobian and determinant?**
 - Product of diagonal!

\[
J_F = \begin{bmatrix}
\frac{dF_1}{dx_1} & 0 & 0 \\
\frac{dF_2}{dx_1} & \frac{dF_2}{dx_2} & 0 \\
\frac{dF_3}{dx_1} & \frac{dF_3}{dx_2} & \frac{dF_3}{dx_3}
\end{bmatrix}
\]

How do we create these invertible layers?
Inverse Autoregressive Flows based on chain rule

- **Forward - Density estimation (sequential)**
 - $z_1 = F_1(x_1)$
 - $z_2 = F_2(x_2 | z_1)$
 - $z_3 = F_3(x_3 | z_1, z_2)$

- **Inverse – Sampling (parallel)**
 - $x_1 = F_1^{-1}(z_1)$
 - $x_2 = F_2^{-1}(z_2 | z_1)$
 - $x_3 = F_3^{-1}(z_3 | z_1, z_2)$

- **What is the Jacobian and determinant?**
 - Product of diagonal!

\[
\text{J}_F = \begin{bmatrix}
\frac{dF_1}{dx_1} & 0 & 0 \\
\frac{dF_1}{dx_1} & \frac{dF_2}{dx_2} & 0 \\
\frac{dF_1}{dx_1} & \frac{dF_2}{dx_2} & \frac{dF_3}{dx_3}
\end{bmatrix}
\]

- **Forward – Density estimation** (parallel)
 - \(z_1 = \exp(\alpha_1)x_1 + \mu_1 \)
 - \(z_2 = \exp(\alpha_2)x_2 + \mu_2, \quad \alpha_2 = f_2(x_1), \quad \mu_2 = g_2(x_1) \)
 - \(z_3 = \exp(\alpha_3)x_3 + \mu_3, \quad \alpha_3 = f_3(x_1, x_2), \quad \mu_3 = g_3(x_1, x_2) \)
- **What is the Jacobian and determinant?**

\[
J_F = \begin{bmatrix}
\exp(\alpha_1) & 0 & 0 \\
\frac{dz_2}{dx_1} & \exp(\alpha_2) & 0 \\
\frac{dz_3}{dx_1} & \frac{dz_3}{dx_2} & \exp(\alpha_3)
\end{bmatrix}
\]
Coupling layers allow parallel density estimation and sampling

- Keep some set of features **fixed** and transform others
 - $z_{1:i-1} = x_{1:i-1}$
 - $z_{i:d} = \exp(f(x_{1:i-1})) \odot x_{i:d} + g(x_{1:i-1})$
- Reverse or shuffle coordinates and repeat
- What is Jacobian?

$$J_F = \begin{bmatrix} I & 0 \\ J_{cross} & \text{diag}(\exp(f(x_{1:i-1}))) \end{bmatrix}$$

The squeeze operation trades off between spatial and channel dimensions

Checkboard or channel-wise masking can be used to separate fixed and non-fixed set of variables.

White are **fixed**, i.e., $x_{1:i-1}$, and black are **transformed**, $x_{i:d}$.

Hierarchical factorization is like an invertible dimensionality reduction method

- After each block, half of the dimensions are fixed and the rest pass through more transformations

- Intuitively, the important part of the signal propagates deeper

GLOW: Convolutional flows
1 x 1 invertible convolutions are like fully connected layers for each pixel

- Image tensor: $h \times w \times c$
- If we use c filters than we map from a $h \times w \times c$ to another $h \times w \times c$ image
- The number of parameters is a matrix $W \in \mathbb{R}^{c \times c}$
- 1x1 convolutions can be seen as a linear transform along the channel dimension (mixes the channel dimensions)

\[(*) = \]
Highly realistic random samples from powerful flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method, and Section 5 for more results.

Similar concepts can be used to generate realistic audio (WaveGlow)

- Listen to some examples
 https://nv-adlr.github.io/WaveGlow

- Very similar concepts for audio generation