Invertible Normalizing Flows

ECE57000: Artificial Intelligence

David I. Inouye

David I. Inouye 0]

GAN Limitation:
Cannot compute density values

» Evaluation of GANs is challenging

> Explicit density models could use test log likelihood
> “l think this looks better than that”

000200 20

/SN A4 Y

IRARAZ 2 2 22

33333 333

/4 EY Y % ¢ 4

SE§5s s S 4§ 5

6 6 olblo ite

_ 71777 777

> Inception-based scores .- 555

G dfl’uthMNIS GA

» Cannot use for classification or outlier detection

David I. Inouye 1

GAN Limitation: Challenging to train because of
careful balance between discriminator and generator

1. Assumptions on possible D and G
1. Theory—All possible D and G
2. Reality — Only functions defined by a neural network

2. Assumptions on optimality
1. Theory — Both optimizations are solved perfectly
2. Reality — The inner maximization is only solved
approximately, and this interacts with outer minimization
3. Assumption on expectations
1. Theory — Expectations over true distribution

2. Reality — Empirical expectations over finite sample; for
images, much of the high-dimensional space does not have
samples

> GANSs can be very difficult/finicky to train

Common problem with GANs: Mode collapse
hinders diversity of samples

From: https://developers.google.com/machine-learning/gan/problems

6 6
» Wasserstein GANSsS] .
2 2
0 0
> Unrolled GANs § |
> Trained on multiple | . —
discriminators simultaneously () True Data (¢) GAN
Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative http://papers.nips.cc/paper/6923-veegan-reducing-mode-

adversarial networks. arXiv preprint arXiv:1611.02163.

collapse-in-gans-using-implicit-variational-learning.pdf

~“SB= | |
'. *} ~ l

. e ' — p ' -
| [¢ 4

https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

David I. Inouye

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

GAN Limitation: Cannot go from observed to
latent space, i.e. x — z not possible/easy

» Cannot manipulate an observed image in latent
space
> Cannot do the following, x > z, z' =2+ 3, z' - x'

> Rather, must start from fake image based on random
Z

All fake 4
images-> ==

smiling neutral neutral

smiling man
woman woman man 9

David I. Inouye

Highly realistic random samples from powerful
flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye 5

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Interpolation between real images using GLOW

(l.* i‘,.:‘.“
o

rﬂt’ _&.{.'é b\
*vﬂ.;.‘ Wy, j;-,\’zrj
i N>) - =

Figure 5: Linear interpolation in latent space between real images.

AN

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye 6

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Transformations of real image along various
features

(e) Young (f) Male

Figure 6: Manipulation of attributes of a face. Each row is made by interpolating the latent code of an
image along a vector corresponding to the attribute, with the middle image being the original image

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Normalizing flows use invertible deep models for
the generator which allow more capabilities

» Transforming between observed/input and latent
space is easy

»x =G (2)
»z=G"1(x)

» Simple sampling like GANs
» z ~ SimpleDistribution
»x = G(z) ~ Py(x), which is estimated distribution

> Exact density is computable via change of variables

» Standard maximum likelihood estimation can be used for
training

David I. Inouye 8

Comparing VAEs and normalizing flows

Input Output
_ —
'] 7
X T R~ p(al6(@)
L=\ ryr~ coe 1T /[l l l
/ /
I N S N N = \\ -
VAE VB OENY By
| /\\ H /<\ /> AN L ~
— /N = N —

Ay SN=ra L(x;, X;)
| \[| - ~ | \ T)
BNz ~00 N[O l l

g SV
o F G ™
L]

Latent code has same dimensionality as input

(no dimensionality reduction) zZ I e . . . -1
o {’ *\ Implicit generatorvia G = F
Normallzmg i I (only need to train encoder F)
Flow X : :
: i B
l [Xi = G(F(Xl))
[_ -1 —
: I — G(G (Xi)) = X
I
|
\ ————— ‘,

F=61!' G=F1 = Llxy, %) = L(x;, %) = 0

Comparing GANs and normalizing flows:
Normalizing flows can use MLE training

Output

Zl J //// fi = G(Zi)
GAN Adversarial training to
compare two sets of
samples

P ¥
\/\(B-

DS

P N

N
(TTTTL]
(T IITTIT]

Latent code has same dimensionality as input
(no dimensionality reduction) Z l

Normalizing

Flow
= G(G‘l(xl-)) = X

MLE training since

— -1 — rr—1
F=aG G=F density function known

David I. Inouye

10

Back to maximum likelihood estimation (MLE):
How can we compute the likelihood
for normalizing flows?

> Suppose
» z ~ Uniform(]|0,1]),i.e.,p,(2) =1
(latent space is uniform)
> G(z) = 2z
>»Thus, x = G(z) = 2z.

» What is the density function of x, what is
Px(x)?

Change of variables formula gives p,. in terms of

the p, and the derivative of G 1

> Key idea: Must conserve density volume (so
that distribution sums to 1).

» pe(xX)]|dx| = p,(z)|dz|, this is like the

preservation of volume/area/mass.

> Intuition: We only have 1 unit of “dirt” to move

around.

» Rearrange above equation to get formula

dz

dx

px(x) —

pz(Z) —

dG1(x)

dx

p,(G71(x))

Demo of change of variables

David I. Inouye

Derivation of change of variables
using CDF function (Increasing)

> Assume x = G(z), where G(z) is an increasing function
»Fe(a) =Pr(x < a) = [°_p,(D)dt

»E.(a) = Pr(x < a)

»=Pr(G(z) < a)

> = Pr(z < G'l(a)) = F'Z(G‘l(a))

> Now take the derivative of both sides with respect to a

> Left hand side: 2% da p.(a)

(1<a>) _ dr (67 (@) (da—l(a>)

da - d(67 () da

b — pz(G_l()) (dG—l(a))
= pe(@) = p, (671 (@) (2219

> You can do similarly for decreasing functions to get: p,(a) = pz(G‘l(a)) |

» Right hand side:

dGé 1(a)

David I. Inouye

Inverse transform sampling ()
IS based on change of variables x4

» z ~ Uniform(]0,1])
» v ~ AnotherDistribution

»x = E;1(2), where E; 1 is the
inverse CDF for v

» What is the distribution of x? R
dFy(x)
P () = p, (F () |7

> D (x) = (D) |py, (x)]| = pv(x)

What about change of variables
in higher dimensions?

> Let’s again build a little intuition (see demo)

> Again, conservation of volume: Consider

infinitesimal expansion or shrinkage of volume
p(xy, xp)|dxydx,| = p(zy,2,)|dzydz,)|

» Given that Jacobian is all mixed derivatives we

get generalization for vector to vector invertible
functions:

px(x) = |det]g-1 (x)| p, (G (x))

What is the Jacobian again?
The best linear approximation at a point

» The Jacobian definition:

024 0z117 [0G 1(x), 0G1(x)1]
N 320 P T o
T =L,x)=: = i |= B B

O0za =~ 0za| [3G7'(X)a = 0G'(X)a

|01 6xd_ d0x4 E)xd

» The determinant measures the local linear
expansion or shrinkage around a point

David I. Inouye

The determinant Jacobian of compositions of
functions is the product of determinant Jacobians

> Suppose F(x) = F, (F1 (x))
> The Jacobian expands like the chain rule
Jr () = Jp,(FL0))JF, (%) = Jr,JF,

> |f we take the determinant of the Jacobian, then
it becomes a product of determinants

det/p = detJg, Jr, = (det]Fz)(det]Fl)

> This will be useful since each layer of our flows
will be invertible

Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for
each layer

> Simply optimize the minimize negative log
likelihood where Fyg = G

arg mm — —z log p,.(x;; 0)

. — %Zl logp, (Fe (xi))‘det]Fe (xl)‘
T %Z-[log pz(Fo (x;)) + log|det [, (x)|]

>_%Z lngz(Fe(xl)) +)., log|det] ()(- 1))“
0

~ _ _ @& £-1
where z; = x;, and z; = F, (Zl-)

David I. Inouye

How do we create these invertible layers?

> Consider arbitrary invertible transformation Fg
> How often would ‘det]F9| need to be computed?

> High computation costs

» Determinant costs roughly O(d?) even if Jacobian is
already computed!

> Would need to be computed every stochastic
gradient iteration

How do we create these invertible layers?
Independent transformation on each dimension

> 7y = Fy(x1)
> Zy; = Fy(xy)
> Z3 = F3(x3)
» What is the Jacobian?

dF
1(x1) 0 0
dxq
dF,(x
=l 0 @G
X2
0 dF3(x3)
dx; |

David I. Inouye

How do we create these invertible layers?
Autoregressive Flows based on chain rule

» Forward - Density estimation (in parallel)
>z = F1(xq)
> Zp = Fy(xz|x1)
> z3 = F3(x3]xq, X5)
> Inverse — Sampling (conditioned on x so must be sequential)
> %, = Fy ' (zy)
> Xy = Fy 1 (z3]%1)
> x3 = F5 1 (z3]x1, %)
» What is the Jacobian and determinant?
> Product of diagonal! dh 0

dx1
dF, dF,

F. F. F.
Rezende, D., & Mohamed, S. (2015, June). Variational Inference with d 3 d 3 d 3
Normalizing Flows. In International Conference on Machine Learning (pp. Ld x4 dx, dx3A
1530-1538).

David I. Inouye

How do we create these invertible layers?
Inverse Autoregressive Flows based on chain rule

» Forward - Density estimation (sequential)
>z = F1(xq)
>z, = Fy(x3|21)
> z3 = F3(x3|24, 25)
> Inverse — Sampling (parallel)
> %, = Fy ' (zy)
> Xy = Fy 1 (23|21)
> x3 = F3 ' (23]21, 2)
» What is the Jacobian and determinant?
> Product of diagonal! i BY 0

dxq

_ar, ar
Jr = dx, dx,
dF; dF; dF;

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In Advances in _dx1 dxz dX3 -
neural information processing systems (pp. 4743-4751).

David I. Inouye

Scale-and-shift simple form of invertible functions
(MAF https://arxiv.org/pdf/1705.07057.pdf)

» Forward - Density estimation (parallel)

> 7y = exp(ag)xs + Uy

> Zy = exp(az)xp + Ha, ap = folxq), Hz = g2(x1)

> z3 = exp(as)x3 + U3, az = fz(x1,x2), puz = g3(x1, x2)
» What is the Jacobian and determinant?

exp(aq) 0 0 7
dz,
Io=| @ exp(a;) 0
 dx dx, exp(a3)_

David I. Inouye

https://arxiv.org/pdf/1705.07057.pdf

Coupling layers allow parallel
density estimation and sampling

> Keep some set of features fixed and transform
others

> Z1.-1 = X1:i—1

> Zi.qg = exp(f(xl:i—l)) O xiqg+90xi-1)
> Reverse or shuffle coordinates and repeat
» What is Jacobian?

Jr = []CMSS diag(exp(f(x1:i—1)))]

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

David I. Inouye

The squeeze operation trades off between spatial
and channel dimensions

Hx W xC H/2 x W/2 x 4C

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

David I. Inouye

Checkboard or channel-wise masking can be used to
separate fixed and non-fixed set of variables

White are fixed, i.e., x1.;_1, and black are transformed, x;.;.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

David I. Inouye

Hierarchical factorization is like an invertible
dimensionality reduction method

> After each block, half
of the dimensions are
fixed and the rest pass
through more
transformations

> Intuitively, the
important part of the
signal propagates
deeper

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

David I. Inouye

GLOW: Convolutional flows
1 x 1 invertible convolutions are like
fully connected layers for each pixel

> Image tensor: h X w X ¢

> If we use c filters than we map fromah X w X c to anotherh X w X ¢
image

> The number of parameters is a matrix W € R¢*¢

> 1x1 convolutions can be seen as a linear transform along the channel
dimension (mixes the channel dimensions)

2

David I. Inouye

Highly realistic random samples from powerful
flow model (GLOW)

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

David I. Inouye

32

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Similar concepts can be used to generate realistic
audio (WaveGlow)

> Listen to some examples
https://nv-adir.github.io/WaveGlow

> Very similar concepts for audio generation

https://nv-adlr.github.io/WaveGlow

