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Very high-dimensional data 
is becoming ubiquitous

▸Images (1 million pixels)

▸Text (100k unique 
words)

▸Genetics (4 million SNPs)

▸Business data (12 million 
products)

David I. Inouye 1



Why dimensionality reduction?
Lower computation costs

▸Suppose original dimension 
is large like d = 100000
(e.g., images, DNA 
sequencing, or text)

▸If we reduce to 𝑘 = 100
dimensions, the training 
algorithm can be sped up by 
1000×

David I. Inouye 2

4-5 million SNPs in human genome.
https://www.diagnosticsolutionslab.com/tests/genomicinsight

https://www.diagnosticsolutionslab.com/tests/genomicinsight


Why dimensionality reduction?
Visualization

▸Allows 2D scatterplot visualizations even of 
high-dimensional data (2D projection of digits)
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https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html


Why dimensionality reduction?
Noise reduction via reconstruction
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Principal component analysis finds the best linear 
projection onto a lower-dimensional space
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

2D to 1D projection: Red lines show the projection error onto 1D lines.  PCA finds the line 
that has the smallest projection error (in this example, when it aligns with the purple).

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


Principal Component Analysis (PCA) can be formalized 
as minimizing the linear reconstruction error of the 
data using only 𝑘 ≤ 𝑑 dimensions

▸PCA can be formalized as
min
!,#

𝑋$ − 𝑍𝑊%
&
'

▸where
X! = X − 𝜇"1# ∈ ℝ$×& centered input data
𝑍 ∈ ℝ$×' (latent representation or “scores” )
𝑊# ∈ ℝ'×& (principal components)
𝑤(#𝑤) = 0,𝑤(#𝑤( = 𝑤( * = 1, ∀𝑠, 𝑡
orthogonal constraint

▸Solution
▸𝑊# = 𝑉+:'# where	𝑋- = 𝑈𝑆𝑉# is	the	SVD of 𝑋-
▸𝑍 = 𝑋-𝑊
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Review of linear algebra 
and introduction to numpy Python library

▸See Jupyter notebook, which can be opened 
and run in Google Colab
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The orthogonal projection onto a 1D line 
is the closest projection

▸Given a line defined by a unit vector 𝑤, what is 
the closest projection onto that line?

▸The orthogonal projection! (via dot product)
𝑦 = 𝑥!𝑤 𝑤 = 𝑧𝑤

▸Where 𝑧 = 𝑥 𝑤 cos 𝜃 = 𝑥 cos 𝜃 is the 
distance from the origin (cos = adj/hyp)
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Formulate problem as 
minimizing reconstruction error

▸Squared distance of point to best projection
𝑥 − 𝑦 "

" = 𝑥 − 𝑥!𝑤 𝑤 "
"

▸Minimize the reconstruction error for all points 
in the dataset

min
!: ! #$

,
%

𝑥% − 𝑥%&𝑤 𝑤
'
' = 𝑋( − 𝑋(𝑤 𝑤&

)
'

▸PCA generalized to more dimensions
min
#

𝑋$ − 𝑋$𝑊 𝑊!
%
" s. t. 𝑊!𝑊 = 𝐼
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The PCA solution is the top 𝑘
right singular vectors via SVD

▸If 𝑋$ = 𝑈𝑆𝑉!, then the solution to the previous 
problem is simply 𝑊∗ = 𝑉':)

▸Remember: SVD is best 𝑘 dim. approximation
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The solution reveals the truncated SVD 
as best approximation

min
#

𝑋$ − 𝑋$𝑊 𝑊!
%
" s. t. 𝑊!𝑊 = 𝐼
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𝑛 𝑛

𝑑
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𝑘
𝑘

𝑑

𝑋! 𝑈

𝑉!:#
𝑉#:%"

- 𝑆

𝑉"

𝑋! = 𝑈𝑆𝑉" 𝑊 = 𝑉#:%



The solution reveals the truncated SVD 
as best approximation

min
#

𝑋$ − 𝑋$𝑊 𝑊!
%
" s. t. 𝑊!𝑊 = 𝐼
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Claim: Minimizing reconstruction error (red lines) is 
equivalent to maximizing the variance of projection 
(spread of red points)
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Max reconstruction error
Min variance

Min reconstruction error
Max variance



Derivation of min error 
equivalent to max variance

▸Simplify squared distance

▸ 𝑥* − 𝑥*!𝑤 𝑤
"
"

▸= 𝑥* − 𝑥*!𝑤 𝑤 ! 𝑥* − 𝑥*!𝑤 𝑤
▸= 𝑥*!𝑥* − 2 𝑥*!𝑤 𝑤!𝑥* + 𝑥*!𝑤

"
𝑤!𝑤

▸= 𝑥* " − 2 𝑥*!𝑤
"
+ 𝑥*!𝑤

"
𝑤 "

▸= 𝑥* " − 𝑥*!𝑤
"
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Derivation of min error 
equivalent to max variance

▸Equivalence of optimization in 1D
▸arg min

!
∑% 𝑥% − 𝑥%&𝑤 𝑤 '

'

▸= arg min
!

∑% 𝑥% ' − 𝑥%&𝑤
'
= arg min

!
∑%− 𝑥%&𝑤

'

▸= arg max
!

$
*
∑% 𝑥%&𝑤

'
= arg max

!

$
*
∑% 𝑧%'

▸= arg max
!

𝜎+'
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Note 𝑧 is already centered so 
mean of squares is variance



The solution is the eigenvector with the largest 
eigenvalue of the covariance matrix "Σ!

▸Suppose :Σ+ =
'
,
𝑋$!𝑋$ = 𝑄ΛQ-, where 𝜆' ≥

𝜆" ≥ ⋯ ≥ 0
▸The solution is top eigenvector 𝑤∗ = 𝑞$

▸The more general case

arg max
-:-!-#."

,
/#$

0

𝑤/& 6Σ1𝑤/ = arg max
-:-!-#."

,
/#$

0

𝜎+#
'

▸The solution is the top 𝑘 eigenvectors of 6Σ1
𝑊∗ = 𝑄$:0
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The solution to both problems 
is the top 𝑘 right singular vectors of 𝑋"

▸Minimize reconstruction error
▸Singular value decomposition (SVD) of 𝑋( = 𝑈𝑆𝑉&
▸Solution: 𝑊∗ = 𝑉$:0

▸Maximize variance of latent projection
▸Equivalence solution
𝑛 Σ1 = 𝑋(&𝑋( = 𝑈𝑆𝑉& & 𝑈𝑆𝑉& = 𝑉𝑆𝑈& 𝑈𝑆𝑉&
= 𝑉𝑆 𝑈&𝑈 𝑆𝑉& = 𝑉𝑆'𝑉& = 𝑄Λ𝑄&
▸Solution: 𝑊∗ = 𝑄$:0 ≡ 𝑉$:0
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