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Topic models are unsupervised methods for text data that 
extract topic and document representations

1. Given a dataset of text documents (often 
called a corpus), what are the main topics or 
themes?

2. Can you find a compressed semantic 
representation of each document/instance?
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Motivation: Difficult to discover new and relevant 
information in uncategorized text collections

▸Example: New York Times news articles
▸Automatically categorize articles into different themes
▸How do these themes change over time?
▸What specific articles are in each theme?

▸Expensive manual option: Employ many humans to 
carefully read and categorize

▸Cheap automatic option: Use topic models!
▸No labels are required!  Just raw text
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Other examples that could leverage topic models

▸Survey responses

▸Customer feedback

▸Research papers

▸Emails
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Preliminary: How should a collection of 
documents be represented?

▸Two naïve assumptions

1. Each word is considered 
a single unit (called 
unigram)

2. Order of words ignored 
(Bag-of-words
assumption)
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The sun is bright. 
The bright sun is red.
---------
2 1 3 4
2 4 1 3 5

the sun is bright
=
bright sun the is



Preliminary: The document collection can be 
represented as a word-count matrix

▸Each row represents a document
▸Each column represents a word
▸Each element represents the number of times 
(i.e., count) that word occurred in the document

David I. Inouye 5

𝑋

Documents

Words  

𝑥!,# # times the 𝑗-th word occurred 
in the 𝑖-th document

The whole word count matrix

Create word-count matrix in scikit-learn:  https://scikit-
learn.org/stable/tutorial/text_analytics/working_with_text_data.html

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html


Example word-count matrix

▸This movie is very scary and long
▸This movie is long and is slow
▸This movie is long, spooky good
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Latent semantic indexing (LSI) is one of the 
simplest topic models and uses truncated SVD

▸Optimization over low rank matrices 𝑍 and 𝑊
𝑍,𝑊 = min

!,#
𝑋 − 𝑍𝑊$

%
&

▸Solution: Truncated SVD of 𝑋 = 𝑈𝑆𝑉$
𝑍 = 𝑈𝑆' , 𝑊 = 𝑉'
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LSI “topics” can capture synonymy or similarity 
between words

▸Examples:
▸“Car” and “automobile” (synonyms)
▸“School” and “education” (related)

▸These related words will tend to have high 
weights in the same row of the topic matrix 𝑊$
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LSI document representation groups documents 
even if their exact words do not overlap

▸Example
▸One document only uses the word “car”
▸One document only uses the word “automobile”
▸The documents may have no exact words shared but 

are similar

David I. Inouye 9

𝑍

𝑛

𝑘

𝑋𝑛

𝑑car aut
om

obi
le



LSI problem: Interpretation of topics and representations 
is challenging since values could be arbitrary

▸SVD implicitly assume data is real-valued
▸(e.g., -2.1, 3.5, -1.2, 100.1)

▸Yet input word-count matrix is discrete data
▸Non-negative integer values (e.g., 0,1,2,3,etc.)

▸What do negative values mean?
(e.g., automobile is 1.1 but school is -0.5)

▸What does the scale of these values mean? 
(e.g., 4 or 0.2)
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LSI problem: No generative model to create 
new data (less deep understanding)

▸Like the difference between AEs and VAEs
▸VAEs provide a way to generate fake new data

▸“What I cannot create, I do not understand.” –
Richard Feynman

▸Previously we’ve considered mostly continuous 
generative models (GANs, VAEs, flows, etc.)

▸What about discrete generative models?
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The categorical distribution generalizes the Bernoulli 
(coin flip) distribution to many outcomes

▸Intuition, rolling a 𝑑-sided dice
▸Each side has a probability 𝑝( = Pr 𝑥 = 𝑠
▸In our case, 𝑑 is the number of unique words in 
our corpus
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The multinomial distribution is a simple model for 
count data (the “Ind. Gaussian” for count data)

▸Intuition, roll 𝑑-sided dice 𝑁 times and record 
count for each side
▸Example: Flip a biased coin 10 times and count 
how many are heads and tails
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𝑥% = 𝑁 − 𝑥& − 𝑥'



The multinomial distribution is a simple model for 
count data (the “Ind. Gaussian” for count data)

▸Word counts can be modeled as 
𝑥 ∼ Multinomial 𝑝; 𝑁

▸𝑝 is the probability for each word
▸𝑁 is the number of words in the document

▸𝑁 = ∑! 𝑥! = 𝑥 "

▸Log PMF is:

log 𝑃%&'( 𝑥 = log
𝑁!

𝑥)!⋯ 𝑥*!
+
+,)

*

𝑝+
-! =,

+,)

*

𝑥+ log 𝑝+ + 𝑐
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A mixture of multinomials adds complexity like 
mixture of Gaussians

▸Let 𝑥 ∼ MixtureMult 𝜋, 𝑝), ⋯ , 𝑝' ; 𝑁
▸𝜋 is the mixture weights
▸𝑝. is the probability vector for the 𝑗-th multinomial 

component distribution
▸𝑁 is the number of words in a document

▸The log PMF is:

log 𝑃+,-. 𝑥 = log'
/01

2

𝜋/𝑃+,-.
/ 𝑥 = log'

/01

2

Pr 𝑧 = 𝑗 𝑃+,-.
/ 𝑥
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Interpretation of multinomials 
and mixture of multinomials

▸Multinomial distribution
▸Assumes all documents have the 

same “topic”
▸A topic is the probability for each 

word

▸Multinomial mixture
▸Each component represents a topic
▸Each document only has one topic

▸What if each documents have 
multiple topics?
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Latent Dirichlet Allocation (LDA) defines a model 
where each document can have multiple topics
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Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.



Background: Dirichlet distribution is a distribution 
over the probability simplex

▸The probability simplex is the set of vectors that 
are non-negative and sum to 1

Δ! = 𝑥 ∈ 0,1 !: ∑𝑥" = 1
▸Dirichlet is simplest distribution on this set
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The generative process of LDA is a mixture of 
mixtures (or admixture)

▸Mixture generative process (assume 𝑁 is fixed)
▸Sample single topic 𝑧 ∼ Categorical 𝜋
▸Repeat ℓ = 1 to 𝑁:

▸Sample individual words  𝑤ℓ ∼ Categorical 𝑝"
(where 𝑤ℓ are one hot vectors)

▸𝑥 = ∑𝑤ℓ (equivalent to 𝑥 ∼ Multinomial 𝑝#; 𝑁 )

▸LDA generative process (assume 𝑁 is fixed)
▸Sample mixture over topics 𝜃/ ∼ Dirichlet 𝛼
▸Repeat ℓ = 1 to 𝑁

▸Sample topic of word 𝑧ℓ ∼ Categorical 𝜃#
▸Sample individual words 𝑤ℓ ∼ Categorical 𝑝"ℓ

▸𝑥 = ∑𝑤ℓ (equivalent to 𝑥 ∼ Multinomial 𝑝$, ⋯ , 𝑝% 𝜃&; 𝑁 )
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Latent Dirichlet Allocation (LDA) defines a model 
where each document can have multiple topics
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After training, we can recover more interpretable 
topics and document representations

▸Each topic is a probability distribution 𝑝! ∈ Δ"

▸Each document is represented by a probability 
distribution over topics 𝜃! ∈ Δ#

▸Can be seen as “discrete PCA” method
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Estimating these generative models for text data

▸Multinomial model
▸MLE has closed form solution (merely empirical 

frequencies)
▸Mixture of multinomials
▸Could use EM algorithm or other mixture-based 

algorithms
▸LDA
▸Variational inference (i.e., use ELBO as in VAEs)
▸MCMC/Gibbs sampling (often performs better)
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Dynamic topic models can track topics over time
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Additional resources for topic modeling

▸Gentle introduction to topic modeling 
http://www.cs.columbia.edu/~blei/papers/Blei2012.
pdf

▸More resources/tutorials
http://www.cs.columbia.edu/~blei/topicmodeling.ht
ml

▸Text analysis with scikit-learn
https://scikit-
learn.org/stable/tutorial/text_analytics/working_wit
h_text_data.html
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