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Topic models are unsupervised methods for text data that
extract topic and document representations

1. Given a dataset of text documents (often

called a corpus), what are the main topics or
themes?

2. Can you find a compressed semantic
representation of each document/instance?
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Motivation: Difficult to discover new and relevant
information in uncategorized text collections

» Example: New York Times news articles

> Automatically categorize articles into different themes
> How do these themes change over time?
> What specific articles are in each theme?

> Expensive manual option: Employ many humans to
carefully read and categorize

> Cheap automatic option: Use topic models!
> No labels are required! Just raw text
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Other examples that could leverage topic models
> Survey responses

> Customer feedback

» Research papers

> Emails
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Preliminary: How should a collection of
documents be represented?

> TWo nailve assumptions

1. Each word is considered The sun Is bright.
. . The bright sun is red.
a single unit (called
1 2134
unigram) el
2. Order of words ignored the sun is bright

(Bag'Of'\{VO rdS ;right sun the is
assumption)
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Preliminary: The document collection can be
represented as a word-count matrix

» Each row represents a document
» Each column represents a word

» Each element represents the number of times
(i.e., count) that word occurred in the document

Words

Documents

The whole word count matrix

Create word-count matrix in scikit-learn: https://scikit-
learn.org/stable/tutorial/text analytics/working with text data.html
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https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Example word-count matrix

> This movie is very scary and long
> This movie is long and is slow
> This movie is long, spooky good

1 2 3 a4 i s 6 7 8 9 10 | 11
. This | movie | is | very ' scary . and : long ' not | slow : spooky | good

TReview | o
‘ 1

. 1 11 1 1 1 0 o0 o | 0
" Review ' f f ' ]

X 1 2 0 o | 1 1 0 1 o : o0
‘ Re‘gew L 1 1 0 0 ! 0 1 0o 0 1 1

https://www.analyticsvidhya.com/blog/2020/02/quick-introduction-bag-of-words-bow-tf-idf/
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Latent semantic indexing (LSI) is one of the

simplest topic models and uses truncated SVD

» Optimization over low rank matrices Z and W

/Z, W = min
ZW

» Solution: Truncated SV
/[ = USk,
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Topics
Z New document
representation




LS| “topics” can capture synonymy or similarity
between words

> Examples:
» “Car” and “automobile” (synonyms)
» “School” and “education” (related)

» These related words will tend to have high
weights in the same row of the topic matrix W'

“Automotive” topic

| may have high values
on columns for “car”,
“automobile” and
“truck”.
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LS| document representation groups documents
even if their exact words do not overlap

> Example
> One document only uses the word “car”
> One document only uses the word “automobile”

> The documents may have no exact words shared but
are similar
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LS| problem: Interpretation of topics and representations
s challenging since values could be arbitrary

> SVD implicitly assume data is real-valued
> (e.g.,-2.1,3.5,-1.2, 100.1)

> Yet input word-count matrix is discrete data
> Non-negative integer values (e.g., 0,1,2,3,etc.)

» What do negative values mean?
(e.g., automobile is 1.1 but school is -0.5)

» What does the scale of these values mean?
(e.g.,40r0.2)
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LS| problem: No generative model to create
new data (less deep understanding)

> Like the difference between AEs and VAEs
> VVAEs provide a way to generate fake new data

> “What | cannot create, | do not understand.” —
Richard Feynman

> Previously we’ve considered mostly continuous
generative models (GANs, VAEs, flows, etc.)

» What about discrete generative models?




The categorical distribution generalizes the Bernoulli
(coin flip) distribution to many outcomes

> Intuition, rolling a d-sided dice
> Each side has a probability p; = Pr(x = s)

> In our case, d is the number of unique words in
our Corpus

Categorical Distribution
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The multinomial distribution is a simple model for
count data (the “Ind. Gaussian” for count data)

> Intuition, roll d-sided dice N times and record
count for each side

» Example: Flip a biased coin 10 times and count
how many are heads and tails

Trinomial Distribution
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The multinomial distribution is a simple model for
count data (the “Ind. Gaussian” for count data)

» Word counts can be modeled as
x ~ Multinomial(p; N)
> p is the probability for each word

> N is the number of words in the document
» N = Ysxs = |lxll4
> Log PMF is:

log Pyt (x) = log ] Hps z xslogps + ¢




A mixture of multinomials adds complexity like
mixture of Gaussians

> Let x ~ MixtureMult(m, (p1, -+, pr); N)
> 17 is the mixture weights

> p; is the probability vector for the j-th multinomial
component distribution

» N is the number of words in a document

> The log PMF is:k

k
=1 j=1

J




Interpretation of multinomials
and mixture of multinomials

Single Topic
> Multinomial distribution o¢
» Assumes all documents have the 0.2 I E m
same “topic” o 8 = F
> A topic is the probability for each ¢ ,@@ & 6@"
WOrd ,b\) )
Multiple Topics
> Multinomial mixture 0.7

0.6

1 0.5
> Each component represents a topic %%

» Each document only has one topic 92 I I

0.2
0.1

» What if each documents have & & O
multiple topics? = g

W Topic 1 Topic 2 Topic 3
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Latent Dirichlet Allocation (LDA) defines a model
where each document can have multiple topics

Topic proportions and

Topics Documents assignments
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Background: Dirichlet distribution is a distribution
over the probability simplex

> The probability simplex is the set of vectors that
are non-negative and sumto 1

A = {x €[0,1]%:¥Yx, = 1}
> Dirichlet is simplest distribution on this set
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The generative process of LDA is a mixture of
mixtures (or admixture)

> Mixture generative process (assume N is fixed)
> Sample single topic z ~ Categorical ()
> Repeat £ = 1to N:

> Sample individual words w, ~ Categorical(p,)
(where w; are one hot vectors)

> X = )W, (equivalent to x ~ Multinomial(p,; N) )

> LDA generative process (assume N is fixed)

> Sample mixture over topics 8; ~ Dirichlet(a)
>»Repeatf =1to N

> Sample topic of word z, ~ Categorical(6;)
» Sample individual words w, ~ Categorical(pz,g)

> X = )Wy (equivalent to x ~ Multinomial([py, -+, px]0;; N) )
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Latent Dirichlet Allocation (LDA) defines a model
where each document can have multiple topics

Topic proportions and

Topics Documents assignments
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After training, we can recover more interpretable
topics and document representations

> Each topic is a probability distribution p; € A

> Each document is represented by a probability
distribution over topics 8; € A"

» Can be seen as “discrete PCA” method

k d

i« I opics

New document
representation




Estimating these generative models for text data

» Multinomial model
> MLE has closed form solution (merely empirical
frequencies)

» Mixture of multinomials

> Could use EM algorithm or other mixture-based
algorithms

> LDA

> Variational inference (i.e., use ELBO as in VAEs)
> MCMC/Gibbs sampling (often performs better)




Dynamic topic models can track topics over time
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Additional resources for topic modeling

» Gentle introduction to topic modeling
h’ét]p://www.cs.columbia.edu/"'blei/papers/BIeiZOlZ.
par

> More resources/tutorials | | |
ht;cp://www.cs.columbla.edu/"'blel/toplcmodelmg.ht
m

> Text analysis with scikit-learn

https://scikit-

learn.org/stable/tutorial/text analytics/working wit
h text data.nhtml



http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf
http://www.cs.columbia.edu/~blei/topicmodeling.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

