Topic Models

ECE57000: Artificial Intelligence
David I. Inouye
Topic models are unsupervised methods for text data that extract topic and document representations.

1. Given a dataset of text documents (often called a corpus), what are the main topics or themes?

2. Can you find a compressed semantic representation of each document/instance?
Motivation: Difficult to discover new and relevant information in uncategorized text collections

- Example: New York Times news articles
 - Automatically categorize articles into different themes
 - How do these themes change over time?
 - What specific articles are in each theme?

- Expensive manual option: Employ many humans to carefully read and categorize

- Cheap automatic option: Use topic models!
 - No labels are required! Just raw text
Other examples that could leverage topic models

- Survey responses
- Customer feedback
- Research papers
- Emails
Preliminary: How should a collection of documents be represented?

- Two naïve assumptions

1. Each word is considered a single unit (called **unigram**)

2. Order of words ignored (**Bag-of-words assumption**)
Preliminary: The document collection can be represented as a word-count matrix

- Each row represents a document
- Each column represents a word
- Each element represents the number of times (i.e., count) that word occurred in the document

Create word-count matrix in scikit-learn: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
Example word-count matrix

- This movie is very scary and long
- This movie is long and is slow
- This movie is long, spooky good

<table>
<thead>
<tr>
<th></th>
<th>1 This</th>
<th>2 movie</th>
<th>3 is</th>
<th>4 very</th>
<th>5 scary</th>
<th>6 and</th>
<th>7 long</th>
<th>8 not</th>
<th>9 slow</th>
<th>10 spooky</th>
<th>11 good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Review 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Review 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Latent semantic indexing (LSI) is one of the simplest topic models and uses truncated SVD.

- Optimization over low rank matrices Z and W

 $Z, W = \min_{Z,W} \|X - ZW^T\|_F^2$

- Solution: Truncated SVD of $X = USV^T$

 $Z = US_k$, $W = V_k$
LSI “topics” can capture **synonymy** or similarity between words

- **Examples:**
 - “Car” and “automobile” (synonyms)
 - “School” and “education” (related)

- These related words will tend to have high weights in the same row of the topic matrix W^T
LSI document representation groups documents even if their exact words do not overlap

Example

- One document only uses the word “car”
- One document only uses the word “automobile”
- The documents may have no exact words shared but are similar
LSI problem: Interpretation of topics and representations is challenging since values could be arbitrary

- SVD implicitly assume data is real-valued
 - (e.g., -2.1, 3.5, -1.2, 100.1)

- Yet input word-count matrix is discrete data
 - Non-negative integer values (e.g., 0,1,2,3,etc.)

- What do negative values mean?
 (e.g., automobile is 1.1 but school is -0.5)

- What does the scale of these values mean?
 (e.g., 4 or 0.2)
LSI problem: No generative model to create new data (less deep understanding)

▸ Like the difference between AEs and VAEs
 ▸ VAEs provide a way to generate fake new data

▸ “What I cannot create, I do not understand.” – Richard Feynman

▸ Previously we’ve considered mostly *continuous* generative models (GANs, VAEs, flows, etc.)

▸ What about discrete generative models?
The **categorical distribution** generalizes the Bernoulli (coin flip) distribution to many outcomes

- Intuition, rolling a d-sided dice
- Each side has a probability $p_s = \Pr(x = s)$
- In our case, d is the number of unique words in our corpus
The multinomial distribution is a simple model for count data (the “Ind. Gaussian” for count data)

- Intuition, roll d-sided dice N times and record count for each side
- Example: Flip a biased coin 10 times and count how many are heads and tails

$$x_3 = N - x_1 - x_2$$
The multinomial distribution is a simple model for count data (the “Ind. Gaussian” for count data)

- Word counts can be modeled as
 \[x \sim \text{Multinomial}(p; N) \]
 - \(p \) is the probability for each word
 - \(N \) is the number of words in the document
 - \(N = \sum_s x_s = \|x\|_1 \)
- Log PMF is:
 \[
 \log P_{\text{mult}}(x) = \log \frac{N!}{x_1! \cdots x_d!} \prod_{s=1}^{d} p_s^{x_s} = \sum_{s=1}^{d} x_s \log p_s + c
 \]
A mixture of multinomials adds complexity like mixture of Gaussians

- Let \(x \sim \text{MixtureMult}(\pi, (p_1, \cdots, p_k); N) \)
 - \(\pi \) is the mixture weights
 - \(p_j \) is the probability vector for the \(j \)-th multinomial component distribution
 - \(N \) is the number of words in a document

- The log PMF is:

\[
\log P_{\text{mult}}(x) = \log \sum_{j=1}^{k} \pi_j p_j^{\text{mult}}(x) = \log \sum_{j=1}^{k} \Pr(z = j) p_j^{\text{mult}}(x)
\]
Interpretation of multinomials and mixture of multinomials

- Multinomial distribution
 - Assumes all documents have the same “topic”
 - A topic is the probability for each word

- Multinomial mixture
 - Each component represents a topic
 - Each document only has one topic

- What if each document has multiple topics?
Latent Dirichlet Allocation (LDA) defines a model where each document can have multiple topics.

Background: Dirichlet distribution is a distribution over the probability simplex

- The **probability simplex** is the set of vectors that are non-negative and sum to 1
 \[\Delta^d = \{ x \in [0,1]^d : \sum x_s = 1 \} \]
- Dirichlet is simplest distribution on this set

![Dirichlet distribution graph](image)
The generative process of LDA is a mixture of mixtures (or admixture)

- Mixture generative process (assume N is fixed)
 - Sample single topic $z \sim \text{Categorical}(\pi)$
 - Repeat $\ell = 1$ to N:
 - Sample individual words $w_\ell \sim \text{Categorical}(p_z)$
 (where w_ℓ are one hot vectors)
 - $x = \sum w_\ell$ (equivalent to $x \sim \text{Multinomial}(p_z; N)$)

- LDA generative process (assume N is fixed)
 - Sample mixture over topics $\theta_i \sim \text{Dirichlet}(\alpha)$
 - Repeat $\ell = 1$ to N
 - Sample topic of word $z_\ell \sim \text{Categorical}(\theta_i)$
 - Sample individual words $w_\ell \sim \text{Categorical}(p_{z_\ell})$
 - $x = \sum w_\ell$ (equivalent to $x \sim \text{Multinomial}([p_1, \ldots, p_k] \theta_i; N)$)
Latent Dirichlet Allocation (LDA) defines a model where each document can have multiple topics.

After training, we can recover more interpretable topics and document representations

- Each topic is a probability distribution $p_j \in \Delta^d$
- Each document is represented by a probability distribution over topics $\theta_j \in \Delta^k$
- Can be seen as “discrete PCA” method
Estimating these generative models for text data

- **Multinomial model**
 - MLE has closed form solution (merely empirical frequencies)

- **Mixture of multinomials**
 - Could use EM algorithm or other mixture-based algorithms

- **LDA**
 - Variational inference (i.e., use ELBO as in VAEs)
 - MCMC/Gibbs sampling (often performs better)
Dynamic topic models can track topics over time

Additional resources for topic modeling

▸ Gentle introduction to topic modeling

▸ More resources/tutorials

▸ Text analysis with scikit-learn
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html