Convolutional Neural
Networks (CNN)

ECE57000: Artificial Intelligence
David I. Inouye
2021

David I. Inouye 0]



Why convolutional networks?
> Neuroscientific inspiration

» Computational reasons

» Sparse computation (compared to full deep
networks)

» Shared parameters (only a small number of shared
parameters)

» Translation invariance

David I. Inouye 1



Motivation for convolution networks:
Gabor functions derived from neuroscience
experiments are simple convolutional filters [DL, ch. 9]

ddaESEERR
ddd=ESEERER
AdAddESSRN
HAAZSNNN
NS ZWEm
NNSNS2EZuw
NNSSE2PV
SNSSEEEBEP

David I. Inouye 2



Convolutional networks automatically learn filters
similar to Gabor functions [DL, ch. 9]

David I. Inouye 3



1D convolutions are similar but slightly different
than signal processing / math convolutions

gl 2 225t
r ENEN

g5 8 7 127




Padding or stride parameters alter the
computation and output shape

23251
f H Stride of 2

v




1D convolutions are similar but slightly different
than signal processing / math convolutions

gl 2 225t

f H Zero padding of 1
g2 5 7 8 127 1




Switch to demo of 1D

David I. Inouye 7



2D convolutions are simple generalizations to

matrices

X

Stride of 2

-

y




Switch to demo of 2D

David I. Inouye 9



3D convolutions are similar but usually channel
dimension is assumed

X E RCXWXh
y € :Rlxw’xh’

f e REXIwXSh

“fw X fn convolution” (channel dimension is assumed)

David I. Inouye



Multiple convolutions increase the output
channel dimension




Switch to demo of 3D




Standard Convolutional Layer Terminology
DL, ch. 9]

Complex layer terminology Simple layer terminology

Next layer Next layer

i

Convolutional Layer

Pooling stage Pooling layer

] }

Detector stage:

. . Detector layer: Nonlinearity
Nonlinearity . .

) ) e.g., rectified linear
e.g., rectified linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
Input to layer Input to layers

David I. Inouye




Demo of CIFAR-10 CNN in Pytorch




Two important modern CNN
architecture concepts:
batch normalization and
residual networks




Batch normalization dynamically normalizes each
feature to have zero mean and unit variance

> Basic idea: Normalize input batch of each layer
during the forward pass

1. Input is minibatch of data Xt € R™*? at iteration t
2. Compute mean and standard deviation for every feature

2 .
IE[x JE [(x ,uf) ], vje{1,-,d}
3. Normallze each feature (note different for every batch)

ft _ (xl?] —,Ll])

L,J
ot
J

4. Output X!

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

David I. Inouye




Because BatchNorm removes linear effects,
extra linear parameters are also learned

> The form of this final updat is:
N T
Xij a-t Vit b

> Where y; and 3; are learnable parameters
> While y; and g are computed from the minibatch

» But how do we compute
test time (i.e., no minibatchS

» Use runnlng average of mean and variance

ﬂrun — Alflrun + (1 - A)ﬂbatch

5t St—1
0% run = A0 un + (1-— /1)0' batch

and g about during

David I. Inouye




For CNNs, the channel dimension
is treated as a “feature”

> If the input minibatch tensoris Xt €
RMXEXAXW then the channel dimension c is
treated as a feature:

2
i = Elxf] o = [B[(ef — )]
vj e{1,-,c}
> Where the mean is taken over both the batch
dimension m and the spatial dimensions h and w

> Called “Spatial Batch Normalization”

> Variants: Instance, Group or Layer
Normalization

https://pytorch.org/docs/stable/nn.html#tnormalization-layers

David I. Inouye




BatchNorm can stabilize and accelerate training
of deep models

> To use in practice:

> Only normalize batches during training
(model.train())

> Turn off after training (model.eval())
» Uses running average of mean and variance

» Surprisingly effective at stabilizing training,
reducing training time, and producing better
models

> Not fully understood why it works

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

David I. Inouye




Demo of batch normalization in PyTorch

David I. Inouye




Residual networks add the input
to the output of the CNN

> Most deep model layers have the form:

y =f(x)
> Where f could be any function including a
convolutional layer like f(x) = a(Conv (U(Conv(x))))

» Residual layers add back in the input
y=fx)+x

> Notice that f(x) models the difference between x
and y (hence the name residual)

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 770-778).

David I. Inouye




A residual network enables deeper
networks because gradient
information can flow between layers Flx) +x

Figure 2. Residual learning: a building block.

weight layer

identity

34-layer residual

> A data flow diagram shows the
“shortcut” connections

» Consider composing 2 residual layers:
»zM = £ (x) + x
» 2@ = £,(zD) 4 2O
> Or, equivalently
z®) = f,(i() +x) + f1(x) + x
> |f the residuals = 0, then this is
merely the identity function

Images from: He, K., Zhang, X, Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 770-778).

David I. Inouye




Detail: If the dimensionality is not the same, then use
either fully connected layer or convolution layer to match

> In the 1D case, suppose f(x): R% - R™, then
we need to multiply x by linear operator to
match the dimension

y = f(x) + Wx, where W € R™*d

> Similarly, for images, if f(x): REXhXW _

, we can apply a convolution layer to
match the dimensions

y = f(x) + conv(x),
where conv(:):

RC "sxh!"xw'

chhxw Rc’xh’xw’




Demo of CNN with very simple residual network




