PyTorch Tutorial from:
https://pytorch.org/tutorials/beginner/blitz/cifar10
(https://pytorch.org/tutorials/beginner/blitz/cifar10

Load data (skipping details see tutorial for details)


https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

In [1]:

$matplotlib inline

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose (
[transforms.ToTensor (),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))1)

trainset = torchvision.datasets.CIFAR1O(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DatalLoader(trainset, batch size=4,
shuffle=True, num workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch size=4,
shuffle=False, num workers=2)

classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image

def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy ()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images

imshow(torchvision.utils.make grid(images))

# print labels

print(' '.Jjoin('%5s' % classes[labels[]j]] for j in range(4)))

Files already downloaded and verified
Files already downloaded and verified

deer dog frog bird



In [2]:

Define a Convolutional Neural Network

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
def init (self):

super(Net, self). init ()
# nn.Conv2d(in_channels, out channels/n filters, kernel size)
self.convl = nn.Conv2d(3, 6, 5)
# nn.MaxPool2d(kernel size, stride)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
# nn.Linear(in features, out features)

self.fcl = nn.Linear(1l6 * 5 * 5, 120)
self.fc2 = nn.Linear (120, 84)
self.fc3 = nn.Linear (84, 10)

def forward(self, x):

Input is (N, 3, 32, 32)
self.pool(F.relu(self.convl(x))) # (N, 6, 14, 14)
self.pool(F.relu(self.conv2(x))) # (N, 16, 5, 5)
x.view(-1, 16 * 5 * 5) # (N, 400)
F.relu(self.fcl(x)) # (N, 120)
F.relu(self.fc2(x)) # (N, 84)

self.fc3(x) # (N, 10)

return x

MoM X M X X S
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net = Net()

torch.nn.Conv2d and similar functions produce object
that automatically registers its parameters inside the
torch.nn.Module

Thus, when calling model .parameters (), it will include
these parameters

Note that simple ReLU and maxpool functions do not have
parameters



In [3]: # Remember convolution weight has size (out channels, in channels, *kernel
for name, p in net.named parameters():
print(name, ',', p.size(), type(p))
#print(type(p))
#print(p)

convl.weight , torch.Size([6, 3, 5, 5]) <class 'torch.nn.parameter.Parame
ter'>

convl.bias , torch.Size([6]) <class 'torch.nn.parameter.Parameter'>
conv2.weight , torch.Size([l16, 6, 5, 5]) <class 'torch.nn.parameter.Param
eter'>

conv2.bias , torch.Size([16]) <class 'torch.nn.parameter.Parameter'>
fcl.weight , torch.Size([120, 400]) <class 'torch.nn.parameter.Paramete
r'>

fcl.bias , torch.Size([120]) <class 'torch.nn.parameter.Parameter'>
fc2.weight , torch.Size([84, 120]) <class 'torch.nn.parameter.Parameter'>
fc2.bias , torch.Size([84]) <class 'torch.nn.parameter.Parameter'>
fc3.weight , torch.Size([10, 84]) <class 'torch.nn.parameter.Parameter'>
fc3.bias , torch.Size([10]) <class 'torch.nn.parameter.Parameter'>

Define a Loss function and optimizer

Let's use a Classification Cross-Entropy loss and SGD with momentum.

In [4]: import torch.optim as optim

criterion nn.CrossEntropyLoss ()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

Train the network

This is when things start to get interesting. We simply have to loop over our data iterator, and feed
the inputs to the network and optimize.



In [5]:

In [6]:

for epoch in range(2): # loop over the dataset multiple times

running loss = 0.0

for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data

# zero the parameter gradients
optimizer.zero grad()

# forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

# print statistics
running loss += loss.item()
if i & 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running loss / 2000))
running loss = 0.0

print('Finished Training')

/Users/dinouye/opt/anaconda3/envs/ece570/1ib/python3.8/site-packages/torc
h/nn/functional.py:718: UserWarning: Named tensors and all their associat
ed APIs are an experimental feature and subject to change. Please do not
use them for anything important until they are released as stable. (Trigg
ered internally at /Users/distiller/project/conda/conda-bld/pytorch 1623
459044803 /work/cl0/core/TensorImpl.h:1156.)

return torch.max pool2d(input, kernel size, stride, padding, dilation,
ceil mode)

[1, 2000] loss: 2.226
[1, 4000] loss: 1.864
[1, 6000] loss: 1.684
[1, 8000] loss: 1.570
[1, 10000] loss: 1.523
[1, 12000] loss: 1.484
[2, 2000] loss: 1.390
[2, 4000] loss: 1.394
[2, 6000] loss: 1.376
[2, 8000] loss: 1.342
[2, 10000] loss: 1.334
[2, 12000] loss: 1.302
Finished Training

Let's quickly save our trained model:

PATH = './cifar net.pth'
torch.save(net.state dict(), PATH)

See here <https://pytorch.org/docs/stable/notes/serialization.html> _for
more details on savina PvTorch models.



In [7]:

In [8]:

Out[8]:

In [9]:

In [10]:

f— o e = —a s et g e e ———

Test the'r“ie work on the test data

We have trained the network for 2 passes over the training dataset. But we need to check if the
network has learnt anything at all.

We will check this by predicting the class label that the neural network outputs, and checking it
against the ground-truth. If the prediction is correct, we add the sample to the list of correct
predictions.

Okay, first step. Let us display an image from the test set to get familiar.

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make grid(images))

print('GroundTruth: ', '.join('%5s' % classes[labels[j]] for j in range(4

GroundTruth: cat ship ship plane

Next, let's load back in our saved model (note: saving and re-loading the model wasn't necessary
here, we only did it to illustrate how to do so):

net = Net()
net.load state dict(torch.load(PATH))

<All keys matched successfully>

Okay, now let us see what the neural network thinks these examples above are:

outputs = net(images)

The outputs are energies for the 10 classes. The higher the energy for a class, the more the network
thinks that the image is of the particular class. So, let's get the index of the highest energy:

_, predicted = torch.max(outputs, 1)

print('Predicted: ', '.join('%5s' % classes|[predicted[]]]
for j in range(4)))

Predicted: cat ship ship ship

The results seem pretty good.



In [11]:

In [12]:

Let us look at how the network performs on the whole dataset.

correct = 0
total = 0
with torch.no grad():
for data in testloader:

images, labels = data

outputs = net(images)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%'
100 * correct / total))

5

Accuracy of the network on the 10000 test images: 54 %

That looks way better than chance, which is 10% accuracy (randomly picking a class out of 10
classes). Seems like the network learnt something.

Hmmm, what are the classes that performed well, and the classes that did not perform well:

class correct = list(0. for i in range(10))
class total = list(0. for i in range(10))
with torch.no grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class correct[label] += c[i].item()
class_total[label] += 1

for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class _correct[i] / class_total[i]))

Accuracy of plane : 56 %
Accuracy of car : 66 %
Accuracy of bird : 32 %
Accuracy of cat : 40 %
Accuracy of deer : 36 %
Accuracy of dog : 53 %
Accuracy of frog : 61 %
Accuracy of horse : 63 %
Accuracy of ship : 73 %
Accuracy of truck : 56 %

Demo of batchnorm



(Batch normalization and residual networks content added by David Inouye)

In [13]: # Demo of batchnorm
import torch
import torch.nn as nn
class BatchNormModel (nn.Module):
def init (self, n_channels):
super(). init ()
self.bn = nn.BatchNorm2d(n_channels)

def forward(self, x):
x = self.bn(x)
return x

First let's create and inspect a batchnorm 2D (i.e., for images)
layer

In [14]: n_channels = 3 # Each channel is treated as a "feature" for images
bn _model = nn.BatchNorm2d(n_channels)
list(bn _model.named parameters())

Out[14]: [('weight',
Parameter containing:
tensor([l., 1., 1.], requires grad=True)),
('bias’,
Parameter containing:
tensor([0., 0., 0.], requires grad=True))]

Notice that there are weight and bias parameters for each channel.

Let's investigate the layer's behavior during training



In [15]: def print mean std(A, label='unlabeled'):
print(f'{label}: Mean and standard deviation across channels')
print(torch.mean(A, dim=(0,2,3))) # Sum
print(torch.std(A, dim=(0,2,3), unbiased=False))
print()

torch.manual seed(0)

bn model.train()

batchl = 2*torch.randn((100, n channels, 2, 2)) + torch.arange(n channels).
batch2 = 3*torch.randn((100, n channels, 2, 2)) + -5 # (N, C, H, W)

outl = bn model(batchl)

out2 bn model (batch2)

print mean std(batchl, 'batchl')
print mean_std(outl, 'outl')
print mean_ std(batch2, 'batch2')
print mean std(out2, 'out2')

batchl: Mean and standard deviation across channels
tensor([0.0107, 1.0870, 2.0128])
tensor([2.0200, 1.9704, 2.10947])

outl: Mean and standard deviation across channels
tensor([ 6.8545e-09, 1.5467e-07, -1.2159e-07], grad fn=<MeanBackwardl>)
tensor([1.0000, 1.0000, 1.0000], grad fn=<StdBackward>)

batch2: Mean and standard deviation across channels
tensor([-4.9791, -5.2417, -4.8956])
tensor([3.0027, 3.0281, 2.9813])

out2: Mean and standard deviation across channels
tensor([-1.7166e-07, 3.6746e-07, 2.7969e-07], grad fn=<MeanBackwardl>)
tensor([1.0000, 1.0000, 1.0000], grad fn=<StdBackward>)

Notice that even though distributions of the batches are quite different and different across
channels, the output has been renormalized across the channel to always have zero mean and unit
variance.

What about during test time?

Let's set simulate two simple batches and then apply at test time



In [16]: torch.manual seed(0)
batchl = torch.randn((100, n channels, 2, 2)) + torch.arange(n_channels).re
batch2 = torch.randn((100, n channels, 2, 2)) + 5 # (N, C, H, W)

bn model.train()
outl = bn model(batchl)
out2 = bn model(batch2)

bn model.eval() # Turn OFF dynamic normalization
print('Running mean and standard devaiation')
print(bn_model.running mean)

print(torch.sqgrt(bn model.running var))

print()

outl = bn model(batchl)

out2 bn model (batch2)

print mean std(batchl, 'batchl')
print mean std(outl, ‘'outl')
print mean std(batch2, 'batch2')
print mean_std(out2, 'out2')

Running mean and standard devaiation
tensor([0.0987, 0.2405, 0.4342])
tensor([1.3707, 1.3690, 1.3793)])

batchl: Mean and standard deviation across channels
tensor([0.0054, 1.0435, 2.00647])
tensor([1.0100, 0.9852, 1.0547])

outl: Mean and standard deviation across channels
tensor([-0.0681, 0.5865, 1.1398], grad fn=<MeanBackwardl>)
tensor([0.7368, 0.7197, 0.7647], grad fn=<StdBackward>)

batch2: Mean and standard deviation across channels
tensor([5.0070, 4.9194, 5.0348))
tensor([1.0009, 1.0094, 0.9938])

out2: Mean and standard deviation across channels
tensor([3.5808, 3.4178, 3.3355], grad fn=<MeanBackwardl>)
tensor([0.7302, 0.7373, 0.7205], grad fn=<StdBackward>)

Notice that the running mean and running standard deviation are used for normalization during test
time rather than the batch. Thus, it is important to set model.eval() or model.train()

when running models with BatchNorm or other specialized layers. Generally, it is just good practice
to do this no matter what during training and testing.

Very simple residual network in PyTorch

(See https://towardsdatascience.com/residual-network-implementing-resnet-a7da63c7b278
(https://towardsdatascience.com/residual-network-implementing-resnet-a7da63c7b278) for a
tutorial on the real ResNet architectures from htips://arxiv.org/abs/1512.03385
(https://arxiv.org/abs/1512.03385))



https://towardsdatascience.com/residual-network-implementing-resnet-a7da63c7b278
https://arxiv.org/abs/1512.03385

In [17]: import torch.nn as nn
import torch.nn.functional as F

class ResidualNet(nn.Module):
def init (self):

super(). init ()
# nn.Conv2d(in_channels, out channels/n filters, kernel size)
self.convl = nn.Conv2d(3, 16, 5)
# nn.MaxPool2d(kernel size, stride)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 16, 5, padding=2)
# nn.Linear(in features, out features)
self.fcl = nn.Linear(1l6 * 7 * 7, 120)
self.fc2 = nn.Linear (120, 120)
self.fc3 = nn.Linear (120, 10)

def forward(self, x):

Input is (N, 3, 32, 32)
self.pool(F.relu(self.convl(x))) # (N, 16, 14, 14)

= self.pool(F.relu(self.conv2(x)) + x) # (N, 16, 7, 7)
= x.view(-1, 16 * 7 * 7) #

F.relu(self.fcl(x)) # (N, 120)

= F.relu(self.fc2(x)) + x # (N, 84)

= self.fc3(x) # (N, 10)

return x

MOoM X M M X S
|

net = ResidualNet()

Notice that we merely need to add x back in. PyTorch autograd takes care of the rest. (The real
resnets are a bit more complicated but the basic idea is the same.)

Let's train our very simple residual network



In [18]:

import torch.optim as optim

criterion nn.CrossEntropyLoss ()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(2): # loop over the dataset multiple times

running loss = 0.0

for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data

# zero the parameter gradients
optimizer.zero grad()

# forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

# print statistics
running loss += loss.item()
if i $ 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running loss / 2000))
running loss = 0.0

print('Finished Training')

correct = 0
total = 0
with torch.no grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the non-residual CNN on the 10000 test images: %d %%' %
(

print('Accuracy of the network on the 10000 test images: %d %%
100 * correct / total))

[1, 2000] loss: 1.823
[1, 4000] loss: 1.511
[1, 6000] loss: 1.394
[1, 8000] loss: 1.365
[1, 10000] loss: 1.283
[1, 12000] loss: 1.236
[2, 2000] loss: 1.153
[2, 4000] loss: 1.149
[2, 6000] loss: 1.097
[2, 8000] loss: 1.098
[2, 10000] loss: 1.079
[2, 12000] loss: 1.053

)
°



In

[19]:

Finished Training
Accuracy of the non-residual CNN on the 10000 test images: 53 %
Accuracy of the network on the 10000 test images: 61 %

(Content below is from original tutorial)

Okay, so what next?

How do we run these neural networks on the GPU?

Training on GPU

Just like how you transfer a Tensor onto the GPU, you transfer the neural net onto the GPU.

Let's first define our device as the first visible cuda device if we have CUDA available:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)

cpu

The rest of this section assumes that device is a CUDA device.

Then these methods will recursively go over all modules and convert their parameters and buffers
to CUDA tensors:

.. code:: python
net.to(device)
Remember that you will have to send the inputs and targets at every step to the GPU too:
.. code:: python
inputs, labels = data[0].to(device), data[l].to(device)
Why dont | notice MASSIVE speedup compared to CPU? Because your network is really small.

Exercise: Try increasing the width of your network (argument 2 of the first nn.Conv2d , and
argument 1 of the second nn.Conv2d - they need to be the same number), see what kind of
speedup you get.

Goals achieved:

« Understanding PyTorch's Tensor library and neural networks at a high level.
» Train a small neural network to classify images

Training on multiple GPUs



If you want to see even more MASSIVE speedup using all of your GPUs, please check out
:doc: data parallel tutorial.

Where do | go next?

e :doc: Train neural nets to play video games
</intermediate/reinforcement g learning>

e Train a state-of-the-art ResNet network on imagenet _

e Train a face generator using Generative Adversarial Networks _

e Train a word-level language model using Recurrent LSTM networks _

e More examples _

e More tutorials _

e Discuss PyTorch on the Forums _

e Chat with other users on Slack _



