
Deep Density Destructors
(from a biased viewpoint)

David I. Inouye
Electrical and Computer Engineering

Purdue University

Previous deep normalizing flows are trained end-to-
end where all components are optimized
simultaneously

David I. Inouye Destructive Deep Learning 2

“Black box” deep model

End-to-end learning

“Gray box” deep model

▸Real NVP
▸MAF

▸GLOW
▸Etc.

Modular deep learning would allow local learning
within each component

David I. Inouye Destructive Deep Learning 3

“Black box” deep model

End-to-end learning

“Gray box” deep model

Modular learning ▸Density destructors
▸Each weak/shallow

learning algorithm is
independent

▸Learning algorithms
could be
heterogeneous
(e.g., SGD and
decision trees)

▸Real NVP
▸MAF

▸GLOW
▸Etc.

Destructive learning enables modular deep
learning via “reverse engineering” data

1. Find part to take off
using understanding
and expertise

2. Determine how to
take off part in a
reversible way (e.g.,
unscrewing bolts)

3. Remove part

4. Repeat

1. Find patterns in data
via shallow/weak
learning

2. Map model to
destructive but
invertible
transformation

3. Destroy the patterns
via transformation

4. Repeat

David I. Inouye Destructive Deep Learning 4

Reverse engineering phone Reverse engineering data

Destructive learning enables modular deep
learning via “reverse engineering” data

1. Find patterns in data
via shallow/weak
learning

2. Map model to
destructive
transformation

3. Destroy the patterns
via transformation

4. Repeat

David I. Inouye Destructive Deep Learning 5

Data

𝐷!𝑓! Ω

𝐷"𝑓" Ω

𝐷#𝑓# Ω

Deep
model

Modular weak
learning

Why use modular weak learning
for deep models?

Reuse
The algorithms, insights
and intuitions of shallow
learning can be lifted into
the deep context

Decoupling
Components can be
debugged, tested and
improved separate from
the system

David I. Inouye Destructive Deep Learning 6

Mainstream
Deep Learning Weak

Learners

Why use modular weak learning
for deep models?

Algorithmic
Interpretability
Increasing or decreasing
model complexity is
straightforward

Resource Constraints
Layer-wise training
(memory bottleneck)

Pipelined training
(computation bottleneck)

David I. Inouye Destructive Deep Learning 7

Shrink model
if problem

Grow if
more data

versus

Shallow/weak online learners

Distributed on different
processors or devices

Overview of iterative destructive learning

Motivation and intuition for modular destructive learning

Density destructors objective function

Modular and greedy deep destructive algorithm
• Simple density destructors
• Deep density destructors

Theory about algorithm: Monotonic decrease of objective

Density destructor results

Limitations and open problems

Iterative alignment and translation

David I. Inouye Destructive Deep Learning 8

Background for objective: KL equivalence lemma

▸KL equivalence lemma: If 𝑧 = 𝐷 𝑥 for invertible 𝐷, then
𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥 = 𝐾𝐿 𝑃" 𝑧 , 𝑄" 𝑧

▸𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥

▸= 𝐸#! log #! !
$! !

▸= 𝐸#! log #" % ! &# !
$" % ! &# !

(Change	of	variables	formula)

▸= 𝐸#! log #" % !
$" % !

▸= 𝐸#" log
#" % %$% "

$" % %$% "
(Expectation	change	of	variables	LOTUS)

▸= 𝐸#" log #" "
$" "

▸= 𝐾𝐿 𝑃" 𝑧 , 𝑄" 𝑧

David I. Inouye Destructive Deep Learning 9

Destructive learning objective
is equivalent to MLE

▸The destructive learning objective, where 𝑧 =
𝐷 𝑥 , and 𝑈! 𝑧 is the uniform density function

argmin
"
𝐾𝐿 𝑃! 𝑧; 𝐷 , 𝑈 𝑧

▸Simple corollary is that objective above is MLE:
▸𝐾𝐿 𝑃$ 𝑧; 𝐷 , 𝑈 𝑧
▸= 𝐾𝐿 𝑃% 𝑥 , 𝑄% 𝑥; 𝐷 (KL	equivalence,	MLE	
objective)
▸= 𝐾𝐿 𝑃% 𝑥 , 𝐽& 𝑥 𝑈 𝐷 𝑥 (In	terms	of	𝐷)
▸= 𝐾𝐿 𝑃% 𝑥 , 𝐽& 𝑥 (𝑈 𝑧 = 1)

David I. Inouye Destructive Deep Learning 10

Algorithm: Deep density destructors via sequence of
weak destructors

David I. Inouye Destructive Deep Learning 11

Data

𝐷!ℙ! Ω

𝐷"ℙ" Ω

𝐷#ℙ# Ω

Weak density
estimation

Train
Data

Implicit
Model

2nd Layer

8th Layer

53rd Layer

Density computation and sample generation

David I. Inouye Destructive Deep Learning 12

Uniform

𝐷!'!

𝐷"'!

𝐷#'!

≈DataData

𝐷!

𝐷"

𝐷#

De
st
ru
ct
or

≈Uniform

Generator

det 𝐽&!

det 𝐽&"

det 𝐽&#

Density
Ω'!

×

×

ℙ !" 𝑥 =

Ω'!

Ω'!

Definition: Density destructors generalize the
univariate CDF transformation

▸Univariate: CDF transformation

▸The map Ω ℙ = 𝐷 should:
1. Encode the density ℙ into 𝐷, i.e. ∃ Ω'(.
2. Ensure 𝐷 destroys all patterns in ℙ when applied to the random

variable, i.e. the distribution of D) 𝑋 is	maximum	entropy.
▸A density destructor is an invertible transformation such that

𝑋 ∼ ℙ*
𝐷! 𝑋 ∼ Uniform 0, 1 "

▸Ω'(𝐷* = det 𝐽%& = ℙ* ß Closed-form	density!
▸Different	from	multivariate	CDF	function:	𝐹 𝑥 :ℝ+ → [0,1]

David I. Inouye Destructive Deep Learning 13

Many shallow densities can be mapped to destructors

David I. Inouye Destructive Deep Learning 14

Independent (Beta distributions) Multivariate Gaussian

Gaussian Mixture Decision Tree Density

Data before (left) and after (right) transformation via corresponding density destructor.
Note: Color is just to show correspondence between areas before and after transformation.

Examples of simple closed-form destructors

David I. Inouye Destructive Deep Learning 15

Density destructor algorithm performs greedy
layer-wise construction of deep destructor

1. Simple density estimation (GMM, Gaussian,
tree density, etc.)
𝑄# ← argmin

$∈𝒬
𝐾𝐿 𝑃 𝑥#'(, 𝑄 𝑥#'(

2. Map density to simple destructor layer
𝑑# = Ω 𝑄#

3. Transform data for next layer
𝑥# = 𝑑# 𝑥#'(

4. Update deep destructor
𝐷# = 𝑑# ∘ 𝐷#'(

David I. Inouye Destructive Deep Learning 16

Deep density destructors via sequence of weak
destructors

David I. Inouye Destructive Deep Learning 17

Data

𝐷!ℙ! Ω

𝐷"ℙ" Ω

𝐷#ℙ# Ω

Weak density
estimation

Train
Data

Implicit
Model

2nd Layer

8th Layer

53rd Layer

Destructor algorithm can be shown to monotonically
decrease the negative log likelihood after every
iteration/layer
▸The destructive learning objective, where 𝑧 = 𝐷 𝑥 , and
𝑈 𝑧 is the uniform density function

argmin
%
𝐾𝐿 𝑃" 𝑧 , 𝑈 𝑧

▸Want: Every iteration decreases objective:
𝐾𝐿 𝑃!!∘#!"# $, 𝑈 ≤ 𝐾𝐿 𝑃#!"# $, 𝑈

▸Let 𝑥 = 𝐷,'(𝑥 - and 𝑧 = 𝑑, 𝑥 = 𝑑, 𝐷,'(𝑥(-)

▸𝐾𝐿 𝑃" 𝑧; 𝐷 , 𝑈 𝑧
▸= 𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥; 𝐷

(KL equivalence lemma)
▸≤ 𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥; 𝐷 = 𝐼𝑑

(minimization is better than one particular)
▸= 𝐾𝐿 𝑃! 𝑥 , 𝐽% 𝑥 𝑈 𝐷 𝑥 (Expand in terms of D)

▸= 𝐾𝐿 𝑃! 𝑥 , 𝑈 𝑥

David I. Inouye Destructive Deep Learning 18

Reuse results: Deep density destructors can be built
from simple and well-understood components

▸MNIST 𝑑 = 784
▸CIFAR-10 𝑑 = 3072

▸Autoregressive flow
baselines (DNN-based)
▸MADE [Germain et al.,

2015]
▸Real NVP [Dinh, et al. 2017]
▸MAF [Papamakarios et al.

2017]

▸Our deep copula method
▸PCA + histograms

David I. Inouye Destructive Deep Learning 19

MNIST CIFAR-10
LL D T LL D T

Models from MAF paper computed on Titan X GPU
Gaussian -1367 1 0.0 2367 1 0.0
MADE -1385 1 0.0 448 1 0.2
MADE MoG -1042 1 0.1 -53 1 0.3
Real NVP -1329 5 0.2 2600 5 1.4
Real NVP -1765 10 0.2 2469 10 1.0
MAF -1300 5 0.1 2941 5 3.7
MAF -1314 10 0.2 3054 10 7.5
MAF MoG -1100 5 0.2 2822 5 3.9
Our proposed destructors computed on 10 CPUs
Copula -1028 5 0.2 2626 17 10.1
Pairs (Cop) -1043 17 0.7 -2518 31 7.4
Pairs (Tree) -1003 21 1.0 -2404 31 38.0LL = Log Likelihood (higher is better)
D = # of layers, T = Time

Modularity enables classical learning
improvements to carry over to deep learning

David I. Inouye Destructive Deep Learning 20

Small-sample experiment where number of dimensions is 63 and number of training
samples is 30. Notice how mainstream deep learning fails in this setting.

Log Likelihood

Independent density
classical learning

Destructive deep learning
via small-sample classical learning

Baseline mainstream
deep density learning

Small-sample classical learning

Limitations of destructive modular learning

▸Unlikely to perform as well as joint learning
▸Greedy vs joint optimization
▸Local vs global optimization

▸Must create destructor mapping Ω, which can be
challenging

▸Often requires more layers to achieve similar result
because of optimization

▸Normalizing flows transform to simple known distribution
▸What about transforming between any two distributions?

David I. Inouye Destructive Deep Learning 21

Translating or aligning two arbitrary distributions
is a more general task

▸Flow-based methods for
alignment/translation
▸Likelihood-based: AlignFlow[1],

LRMF[2]

▸Optimal Transport: Iterative
Alignment Flow

▸Iterative Alignment Flow:
(Greedy) fast and easy alignment
of multiple distributions!

David I. Inouye Destructive Deep Learning 22

[1] Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, Stefano Ermon: AlignFlow: Cycle
Consistent Learning from Multiple Domains via Normalizing Flows. AAAI 2020: 4028-4035
[2] Ben Usman, Avneesh Sud, Nick Dufour, Kate Saenko: Log-Likelihood Ratio Minimizing Flows:
Towards Robust and Quantifiable Neural Distribution Alignment. NeurIPS 2020

Iterative Alignment Flow: Extending iterative
approach to translation/alignment task

▸Motivation: Hard to directly align two or more
distributions in a high dimensional space
▸Proposed solution: Decompose the high
dimensional problem into a series of simple 1D
problems
▸Background
▸Optimal transport in 1D
▸Max-sliced Wasserstein Distance (max-SWD)

▸Objective and iterative algorithm
▸Min-max optimization (different from GAN)
▸Iterative algorithm

David I. Inouye Destructive Deep Learning 23

Background: Optimal transport problems in 1D
are known in closed-form!

▸Computing the Wasserstein distance in 1D is
known in closed-form

𝑊(7𝑝) , 7𝑞* =:
+,(

-

𝑥+ − 𝑦+

▸Where the data is sorted 𝑥! ≤ 𝑥" ≤ ⋯ ≤ 𝑥(and
𝑦! ≤ 𝑦" ≤ ⋯ ≤ 𝑦(

▸The optimal Monge map is known in closed-
form

𝑇∗ 𝑥 = 𝐹/'(𝐹0 𝑥

David I. Inouye Destructive Deep Learning 24

Background: Max sliced Wasserstein distance
simplifies to a “worst case” 1D Wasserstein problem

▸Recall Wasserstein-1 Distance

𝑊! 𝑝), 𝑝* =
min
+
𝔼,0 𝑥 − 𝑇 𝑥 !

s. t. 𝑝+) = 𝑝*
▸Max sliced Wasserstein-1 divergence

𝑚𝑎𝑥_𝑆𝑊! 𝑝), 𝑝* = max
-: - 1/!

𝑊! 𝑝)2-, 𝑝*2-

▸Where 𝜃 defines the direction of the projection/slice
▸Note that this finds the largest difference along a 1D

projection/slice

▸The max-SW is 0 if and only if the distributions are
aligned

David I. Inouye Destructive Deep Learning 25

Iterative alignment flow objective is a different
type of min-max optimization

David I. Inouye Destructive Deep Learning 26

▸The objective becomes a min-max optimization:
min
+0,+3

𝑚𝑎𝑥 _𝑆𝑊! 𝑝+0) , 𝑝+3 *

= min
+0,+3

max
-: - 1/!

𝑊! 𝑝+0) 2-, 𝑝+3 * 2-

▸The inner optimization tries to find the “worst-
case” projection that maximizes the divergence.
▸The outer optimization tries to find the
transformation that minimizes this “worst-case”
divergence.
▸Theoretical minimum occurs when distributions are
aligned per the property of max-SW

Algorithm: Iteratively solve min and max
problems

David I. Inouye Destructive Deep Learning 27

▸Find structure 𝜃 by solving max problem

𝜃 ! = arg max
": " !$%

𝑊% 𝑝&"", 𝑝'""

▸Fix 𝜃 ! and solve for simple OT Monge maps via
closed-form solutions (i.e., Ω)

𝑡&
(!), 𝑡'

(!) = arg min
#,$

𝑊% 𝑝*# & "' % , 𝑝*$ ' "' %

▸Transform data
𝑋 ← 𝑡"

! 𝑋 , 𝑌 ← 𝑡#
! 𝑌

▸Update deep transforms
𝑇"
! ← 𝑡$

! ∘ 𝑇"
!%&

Data

𝑡%, 𝑡&𝜃 & Ω

𝑡%, 𝑡&𝜃 ' Ω

𝑡%, 𝑡&𝜃 (Ω

Iterative alignment flows can be used to translate
between multiple domains via this simple iterative
algorithm

David I. Inouye Destructive Deep Learning 28

