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Previous deep normalizing flows are trained end-to-
end where all components are optimized 
simultaneously
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“Black box” deep model

End-to-end learning

“Gray box” deep model

▸Real NVP
▸MAF

▸GLOW
▸Etc.



Modular deep learning would allow local learning 
within each component
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“Black box” deep model

End-to-end learning

“Gray box” deep model

Modular learning ▸Density destructors
▸Each weak/shallow 

learning algorithm is 
independent

▸Learning algorithms 
could be 
heterogeneous
(e.g., SGD and 
decision trees)

▸Real NVP
▸MAF

▸GLOW
▸Etc.



Destructive learning enables modular deep 
learning via “reverse engineering” data

1. Find part to take off 
using understanding 
and expertise

2. Determine how to 
take off part in a 
reversible way (e.g., 
unscrewing bolts)

3. Remove part

4. Repeat

1. Find patterns in data 
via shallow/weak 
learning

2. Map model to 
destructive but 
invertible
transformation

3. Destroy the patterns 
via transformation

4. Repeat
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Reverse engineering phone Reverse engineering data



Destructive learning enables modular deep 
learning via “reverse engineering” data

1. Find patterns in data 
via shallow/weak 
learning

2. Map model to 
destructive 
transformation

3. Destroy the patterns 
via transformation

4. Repeat
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Data

𝐷!𝑓! Ω

𝐷"𝑓" Ω

𝐷#𝑓# Ω

Deep
model

Modular weak 
learning



Why use modular weak learning
for deep models?

Reuse
The algorithms, insights 
and intuitions of shallow 
learning can be lifted into 
the deep context 

Decoupling
Components can be 
debugged, tested and 
improved separate from 
the system
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Mainstream 
Deep Learning Weak

Learners



Why use modular weak learning
for deep models?

Algorithmic 
Interpretability
Increasing or decreasing 
model complexity is 
straightforward

Resource Constraints
Layer-wise training 
(memory bottleneck)

Pipelined training 
(computation bottleneck)
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Shrink model
if problem

Grow if 
more data

versus

Shallow/weak online learners

Distributed on different 
processors or devices



Overview of iterative destructive learning

Motivation and intuition for modular destructive learning

Density destructors objective function

Modular and greedy deep destructive algorithm
• Simple density destructors
• Deep density destructors

Theory about algorithm: Monotonic decrease of objective

Density destructor results

Limitations and open problems

Iterative alignment and translation
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Background for objective: KL equivalence lemma

▸KL equivalence lemma: If 𝑧 = 𝐷 𝑥 for invertible 𝐷, then
𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥 = 𝐾𝐿 𝑃" 𝑧 , 𝑄" 𝑧

▸𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥

▸= 𝐸#! log #! !
$! !

▸= 𝐸#! log #" % ! &# !
$" % ! &# !

(Change	of	variables	formula)

▸= 𝐸#! log #" % !
$" % !

▸= 𝐸#" log
#" % %$% "

$" % %$% "
(Expectation	change	of	variables	LOTUS)

▸= 𝐸#" log #" "
$" "

▸= 𝐾𝐿 𝑃" 𝑧 , 𝑄" 𝑧
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Destructive learning objective 
is equivalent to MLE

▸The destructive learning objective, where 𝑧 =
𝐷 𝑥 , and 𝑈! 𝑧 is the uniform density function

argmin
"
𝐾𝐿 𝑃! 𝑧; 𝐷 , 𝑈 𝑧

▸Simple corollary is that objective above is MLE:
▸𝐾𝐿 𝑃$ 𝑧; 𝐷 , 𝑈 𝑧
▸= 𝐾𝐿 𝑃% 𝑥 , 𝑄% 𝑥; 𝐷 (KL	equivalence,	MLE	
objective)
▸= 𝐾𝐿 𝑃% 𝑥 , 𝐽& 𝑥 𝑈 𝐷 𝑥 (In	terms	of	𝐷)
▸= 𝐾𝐿 𝑃% 𝑥 , 𝐽& 𝑥 (𝑈 𝑧 = 1)
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Algorithm: Deep density destructors via sequence of 
weak destructors

David I. Inouye Destructive Deep Learning 11

Data

𝐷!ℙ! Ω

𝐷"ℙ" Ω

𝐷#ℙ# Ω

Weak density 
estimation

Train
Data

Implicit
Model

2nd Layer

8th Layer

53rd Layer



Density computation and sample generation
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Uniform
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Definition: Density destructors generalize the 
univariate CDF transformation

▸Univariate: CDF transformation

▸The map Ω ℙ = 𝐷 should:
1. Encode the density ℙ into 𝐷, i.e. ∃ Ω'(.
2. Ensure 𝐷 destroys all patterns in ℙ when applied to the random 

variable, i.e. the distribution of D) 𝑋 is	maximum	entropy.
▸A density destructor is an invertible transformation such that

𝑋 ∼ ℙ*
𝐷! 𝑋 ∼ Uniform 0, 1 "

▸Ω'( 𝐷* = det 𝐽%& = ℙ* ß Closed-form	density!
▸Different	from	multivariate	CDF	function:	𝐹 𝑥 :ℝ+ → [0,1]
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Many shallow densities can be mapped to destructors
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Independent (Beta distributions) Multivariate Gaussian

Gaussian Mixture Decision Tree Density

Data before (left) and after (right) transformation via corresponding density destructor.
Note: Color is just to show correspondence between areas before and after transformation.



Examples of simple closed-form destructors
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Density destructor algorithm performs greedy 
layer-wise construction of deep destructor

1. Simple density estimation (GMM, Gaussian, 
tree density, etc.)
𝑄# ← argmin

$∈𝒬
𝐾𝐿 𝑃 𝑥#'( , 𝑄 𝑥#'(

2. Map density to simple destructor layer
𝑑# = Ω 𝑄#

3. Transform data for next layer
𝑥# = 𝑑# 𝑥#'(

4. Update deep destructor
𝐷# = 𝑑# ∘ 𝐷#'(
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Deep density destructors via sequence of weak 
destructors
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Data

𝐷!ℙ! Ω

𝐷"ℙ" Ω

𝐷#ℙ# Ω

Weak density 
estimation

Train
Data

Implicit
Model

2nd Layer

8th Layer

53rd Layer



Destructor algorithm can be shown to monotonically 
decrease the negative log likelihood after every 
iteration/layer
▸The destructive learning objective, where 𝑧 = 𝐷 𝑥 , and 
𝑈 𝑧 is the uniform density function

argmin
%
𝐾𝐿 𝑃" 𝑧 , 𝑈 𝑧

▸Want: Every iteration decreases objective:
𝐾𝐿 𝑃!!∘#!"# $ , 𝑈 ≤ 𝐾𝐿 𝑃#!"# $ , 𝑈

▸Let 𝑥 = 𝐷,'( 𝑥 - and  𝑧 = 𝑑, 𝑥 = 𝑑, 𝐷,'( 𝑥(-)

▸𝐾𝐿 𝑃" 𝑧; 𝐷 , 𝑈 𝑧
▸= 𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥; 𝐷

(KL equivalence lemma)
▸≤ 𝐾𝐿 𝑃! 𝑥 , 𝑄! 𝑥; 𝐷 = 𝐼𝑑

(minimization is better than one particular)
▸= 𝐾𝐿 𝑃! 𝑥 , 𝐽% 𝑥 𝑈 𝐷 𝑥 (Expand in terms of D)

▸= 𝐾𝐿 𝑃! 𝑥 , 𝑈 𝑥
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Reuse results: Deep density destructors can be built 
from simple and well-understood components

▸MNIST 𝑑 = 784
▸CIFAR-10 𝑑 = 3072

▸Autoregressive flow 
baselines (DNN-based)
▸MADE [Germain et al., 

2015]
▸Real NVP [Dinh, et al. 2017]
▸MAF [Papamakarios et al. 

2017]

▸Our deep copula method
▸PCA + histograms
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MNIST CIFAR-10
LL D T LL D T

Models from MAF paper computed on Titan X GPU
Gaussian -1367 1 0.0 2367 1 0.0
MADE -1385 1 0.0 448 1 0.2
MADE MoG -1042 1 0.1 -53 1 0.3
Real NVP -1329 5 0.2 2600 5 1.4
Real NVP -1765 10 0.2 2469 10 1.0
MAF -1300 5 0.1 2941 5 3.7
MAF -1314 10 0.2 3054 10 7.5
MAF MoG -1100 5 0.2 2822 5 3.9
Our proposed destructors computed on 10 CPUs
Copula -1028 5 0.2 2626 17 10.1
Pairs (Cop) -1043 17 0.7 -2518 31 7.4
Pairs (Tree) -1003 21 1.0 -2404 31 38.0LL = Log Likelihood (higher is better)
D = # of layers,  T = Time



Modularity enables classical learning 
improvements to carry over to deep learning
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Small-sample experiment where number of dimensions is 63 and number of training 
samples is 30.  Notice how mainstream deep learning fails in this setting.

Log Likelihood

Independent density 
classical learning

Destructive deep learning
via small-sample classical learning

Baseline mainstream 
deep density learning

Small-sample classical learning



Limitations of destructive modular learning

▸Unlikely to perform as well as joint learning
▸Greedy vs joint optimization
▸Local vs global optimization

▸Must create destructor mapping Ω, which can be 
challenging

▸Often requires more layers to achieve similar result 
because of optimization

▸Normalizing flows transform to simple known distribution
▸What about transforming between any two distributions?
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Translating or aligning two arbitrary distributions 
is a more general task

▸Flow-based methods for 
alignment/translation
▸Likelihood-based: AlignFlow[1], 

LRMF[2]

▸Optimal Transport: Iterative 
Alignment Flow

▸Iterative Alignment Flow: 
(Greedy) fast and easy alignment 
of multiple distributions!
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[1] Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, Stefano Ermon: AlignFlow: Cycle 
Consistent Learning from Multiple Domains via Normalizing Flows. AAAI 2020: 4028-4035
[2] Ben Usman, Avneesh Sud, Nick Dufour, Kate Saenko: Log-Likelihood Ratio Minimizing Flows: 
Towards Robust and Quantifiable Neural Distribution Alignment. NeurIPS 2020



Iterative Alignment Flow: Extending iterative 
approach to translation/alignment task

▸Motivation: Hard to directly align two or more 
distributions in a high dimensional space
▸Proposed solution: Decompose the high 
dimensional problem into a series of simple 1D 
problems
▸Background
▸Optimal transport in 1D
▸Max-sliced Wasserstein Distance (max-SWD)

▸Objective and iterative algorithm
▸Min-max optimization (different from GAN)
▸Iterative algorithm

David I. Inouye Destructive Deep Learning 23



Background: Optimal transport problems in 1D 
are known in closed-form!

▸Computing the Wasserstein distance in 1D is 
known in closed-form

𝑊( 7𝑝) , 7𝑞* =:
+,(

-

𝑥+ − 𝑦+

▸Where the data is sorted 𝑥! ≤ 𝑥" ≤ ⋯ ≤ 𝑥( and 
𝑦! ≤ 𝑦" ≤ ⋯ ≤ 𝑦(

▸The optimal Monge map is known in closed-
form

𝑇∗ 𝑥 = 𝐹/'( 𝐹0 𝑥
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Background: Max sliced Wasserstein distance 
simplifies to a “worst case” 1D Wasserstein problem

▸Recall Wasserstein-1 Distance 

𝑊! 𝑝), 𝑝* =
min
+
𝔼,0 𝑥 − 𝑇 𝑥 !

s. t. 𝑝+ ) = 𝑝*
▸Max sliced Wasserstein-1 divergence

𝑚𝑎𝑥_𝑆𝑊! 𝑝), 𝑝* = max
-: - 1/!

𝑊! 𝑝)2-, 𝑝*2-

▸Where 𝜃 defines the direction of the projection/slice
▸Note that this finds the largest difference along a 1D

projection/slice

▸The max-SW is 0 if and only if the distributions are 
aligned
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Iterative alignment flow objective is a different 
type of min-max optimization
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▸The objective becomes a min-max optimization:
min
+0,+3

𝑚𝑎𝑥 _𝑆𝑊! 𝑝+0 ) , 𝑝+3 *

= min
+0,+3

max
-: - 1/!

𝑊! 𝑝+0 ) 2-, 𝑝+3 * 2-

▸The inner optimization tries to find the “worst-
case” projection that maximizes the divergence.
▸The outer optimization tries to find the 
transformation that minimizes this “worst-case” 
divergence.
▸Theoretical minimum occurs when distributions are 
aligned per the property of max-SW



Algorithm: Iteratively solve min and max 
problems
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▸Find structure 𝜃 by solving max problem

𝜃 ! = arg max
": " !$%

𝑊% 𝑝&"", 𝑝'""

▸Fix 𝜃 ! and solve for simple OT Monge maps via 
closed-form solutions (i.e., Ω)

𝑡&
(!), 𝑡'

(!) = arg min
*#,*$

𝑊% 𝑝*# & "' % , 𝑝*$ ' "' %

▸Transform data
𝑋 ← 𝑡"

! 𝑋 , 𝑌 ← 𝑡#
! 𝑌

▸Update deep transforms
𝑇"
! ← 𝑡$

! ∘ 𝑇"
!%&

Data

𝑡%, 𝑡&𝜃 & Ω

𝑡%, 𝑡&𝜃 ' Ω

𝑡%, 𝑡&𝜃 ( Ω



Iterative alignment flows can be used to translate 
between multiple domains via this simple iterative 
algorithm
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