(Biased) Overview of A.I. Topics

David I. Inouye

Wednesday, August 25, 2021
High-Level Categorization of AI Topics

1. Artificial Intelligence (other than topics below)

3. Computer Vision

4. Natural Language Processing
1. Artificial Intelligence (Based on AAAI topic list)

- Cognitive modeling and systems
- Constraint Satisfaction/ Optimization
- Game theory
- Human + AI
- Knowledge representation and reasoning
- Robotics
AI: Cognitive Modeling

- Models of human/animal cognition
- Based on psychological theory and experiments
- 2 Goals
 - AI -> Cognitive Science: Understand/test underlying cognitive mechanisms by computational modeling
 - Cognitive Science -> AI: Improve computational methods via insights from cognitive science
AI: Constraint Satisfaction / Heuristic Optimization

- Eight queens puzzle
- Map coloring problem
- Real-world
 - Resource allocation
 - Scheduling
AI: Game Theory

- Prisoner’s dilemma

![Prisoner's Dilemma Diagram]

- Real-world
 - Google Ads bidding
 - Connections to “Generative Adversarial Networks”
AI: Human + AI

- Crowdsourcing
 - “Stop spam, read books”

- Human-robot interactions

AI: Knowledge representation and reasoning

▸ Knowledge graphs

- Spock played characterIn Leonard Nimoy
- Science Fiction genre Star Trek
- Star Wars starredIn Alec Guinness
- Obi-Wan Kenobi characterIn played

▸ Inferences in knowledge graphs
 ▸ Did Alec Guinness ever play a Science Fiction character?

2. Machine Learning (based on NeurIPS Topics)

- Learning with limited labels
- Generative / probabilistic models
- Reinforcement learning
- Explainable AI
ML: Learning with limited labels

▶ Active learning

▶ Few-Shot Learning

Dataset

Classes with many samples Classes with few samples

Classifier

Labeled Data → Machine Learning Model → Pool of Unlabeled Data

Label for Difficult Point

Point That is Difficult for Machine

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18

https://blog.cloudera.com/a-guide-to-learning-with-limited-labeled-data/
ML: AutoML / Meta-learning

https://cloud.google.com/automl-tables/?hl=vi
ML: Generative/Probabilistic Models

- Density estimation
- Graphical Models

The Student Network

<table>
<thead>
<tr>
<th></th>
<th>d^0</th>
<th>d^1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>i^0</td>
<td>i^1</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s^0</th>
<th>s^1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i^0</td>
<td>i^1</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>i^1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>g^1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g^0</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>g^0</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>g^0</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>g^0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

Positive Exp. SQR

Negative Exp. SQR

Positive Poisson SQR

Negative Poisson SQR
ML: Topic Models

ML: Generative Adversarial Networks (GAN)

- Generative Adversarial Networks (GAN)

 ![Image of generated images](http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)

- Image to image translation via GANs

 ![Image of image translation](http://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With.CVPR.2017_paper.pdf)
ML: Invertible networks

- Invertible Flows

- Deep Density Destructors

ML: Reinforcement Learning

- Game playing

- Bandit algorithms (simpler form of RL)
 - Which Google search result should I show?
ML: Explainable AI

Why model explanations? Accuracy is insufficient for many applications

- Loan approval: “Could the model make a catastrophic mistake?”
- Self-driving cars: “Does the model obey common sense intuitions?”
- Bail decisions: “Is the model biased because of historical discrimination?”
- Healthcare: “Does the model agree with doctor’s knowledge?”
- Military strategy: “How will the model perform in adversarial settings?”
ML: Domain Generalization

- Distribution shifts in the real-world

<table>
<thead>
<tr>
<th>Dataset</th>
<th>iWildCam</th>
<th>Camelyon17</th>
<th>RxRx1</th>
<th>OGB-MolPCBA</th>
<th>GlobalWheat</th>
<th>CivilComments</th>
<th>FMoW</th>
<th>PovertyMap</th>
<th>Amazon</th>
<th>Py150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input (x)</td>
<td>camera</td>
<td>tissue</td>
<td>slide</td>
<td>cell image</td>
<td>molecular</td>
<td>graph</td>
<td>image</td>
<td>comment</td>
<td>satellite image</td>
<td>product review</td>
</tr>
<tr>
<td>Prediction (y)</td>
<td>animal</td>
<td>species</td>
<td>tumor</td>
<td>perturbed</td>
<td>gene</td>
<td>bioassays</td>
<td>wheat</td>
<td>head bbox</td>
<td>toxicity</td>
<td>land use</td>
</tr>
<tr>
<td>Domain (d)</td>
<td>camera</td>
<td>hospital</td>
<td>batch</td>
<td>scaffold</td>
<td>location,</td>
<td>time</td>
<td>demographic</td>
<td>time, region</td>
<td>country</td>
<td>rural-urban</td>
</tr>
<tr>
<td># domains</td>
<td>323</td>
<td>5</td>
<td>51</td>
<td>120,084</td>
<td>47</td>
<td>16</td>
<td>23 x 2</td>
<td>2,586</td>
<td>8,421</td>
<td></td>
</tr>
<tr>
<td># examples</td>
<td>203,029</td>
<td>455,954</td>
<td>125,510</td>
<td>437,929</td>
<td>6,515</td>
<td>448,000</td>
<td>523,846</td>
<td>19,669</td>
<td>539,502</td>
<td>150,000</td>
</tr>
</tbody>
</table>

- How can you train models so that they work in new unseen test domains?

3. Computer Vision (Based on CVPR sessions)

- Classic tasks

- 3D Multiview / Depth estimation

- Synthesis
CV: Classic Tasks

▸ Recognition

▸ Segmentation

http://vladlen.info/publications/feature-space-optimization-for-semantic-video-segmentation/
CV: 3D Multiview / Depth estimation

https://vision.in.tum.de/research/image-based_3d_reconstruction/multiviewreconstruction

CV: Image / Video Generation (Synthesis)

- Style transfer

- Sketch to draw

4. Natural Language Processing (based on ACL 2019 Call for Papers (CFP))

- Tagging and Parsing
- Information Extraction and Text Mining
- Dialogue Systems / Question Answering
- Applications
 - Summarization
 - Sentiment Analysis
 - Machine Translation
NLP: Ambiguity is huge challenge in NLP

Lexical Ambiguity
The presence of two or more possible meanings within a single word.

"I saw her duck."

Syntactic Ambiguity
The presence of two or more possible meanings within a single sentence or sequence of words.

"The chicken is ready to eat."

https://www.thoughtco.com/ambiguity-language-1692388
NLP: Tagging and Parsing
NLP: Information Extraction and Text Mining

Text in

Brazil ranks number 5 in the list of countries by population.

The term “Ibu Negara” (Lady/Mother of the State) is used for wife of the President of Indonesia.

Game of Thrones is an adaptation of A Song of Ice and Fire, George R. R. Martin’s series of fantasy novels. It ranks fourth among the IMDB Top Rated TV Shows.

Data out

THE COUNTRIES WITH THE LARGEST POPULATION

<table>
<thead>
<tr>
<th>Country</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1,388,232,693</td>
</tr>
<tr>
<td>India</td>
<td>1,342,512,706</td>
</tr>
<tr>
<td>Unites States</td>
<td>326,474,013</td>
</tr>
<tr>
<td>Indonesia</td>
<td>263,510,146</td>
</tr>
<tr>
<td>Brasil</td>
<td>174,315,386</td>
</tr>
</tbody>
</table>

THE COUNTRY’S FIRST LADIES

- **Brigitte Macron**: Spouse: Emmanuel Macron, President of France (2017 -)
- **Melania Trump**: Spouse: Donald J. Trump, U.S. President (2017 -)
- **Iriana Widodo**: Spouse: Joko Widodo, President of Indonesia (2014 -)
 - Also known as: “Ibu Negara” (Lady/Mother of the State)

IMDB TOP RATED TV SHOWS

https://www.ontotext.com/knowledgehub/fundamentals/information-extraction/
NLP: Dialogue Systems / Question Answering

High-Level Categorization of AI Topics

1. Artificial Intelligence (other than topics below)

3. Computer Vision

4. Natural Language Processing