Topic Models

ECE57000: Artificial Intelligence
David I. Inouye
Topic models are unsupervised methods for text data that extract topic and document representations.

1. Given a dataset of text documents (often called a **corpus**), what are the main topics or themes?
2. Can you find a compressed semantic representation of each document/instance?
Motivation: Difficult to discover new and relevant information in uncategorized text collections

▸ Example: New York Times news articles
 ▸ Automatically categorize articles into different themes
 ▸ How do these themes change over time?
 ▸ What specific articles are in each theme?

▸ Expensive manual option: Employ many humans to carefully read and categorize

▸ Cheap automatic option: Use topic models!
 ▸ No labels are required! Just raw text
Other examples that could leverage topic models

▸ Survey responses

▸ Customer feedback

▸ Research papers

▸ Emails
Overview of topic models

- Motivation
- Preliminary: Representing documents
- Latent Semantic Indexing: Non-probabilistic topic model
 - Mathematical formulation
 - Interpretation of solutions
 - Limitations
- Probabilistic topic models
 - Categorical and multinomial distributions
 - Mixture of multinomials
 - Document-specific mixture of multinomials (LDA)
 - Interpretation
- Algorithms
 - Variational inference (via ELBO as in VAEs)
 - MCMC sampling
Preliminary: How should a collection of documents be represented?

- Two naïve assumptions

1. Each word is considered a single unit (called **unigram**)
 - The sun is bright.
 - The bright sun is red.
 - --------
 - 2 1 3 4
 - 2 4 1 3 5

2. Order of words ignored (**Bag-of-words** assumption)
 - the sun is bright =
 - bright sun the is
Preliminary: The document collection can be represented as a word-count matrix

- Each row represents a document
- Each column represents a word
- Each element represents the number of times (i.e., count) that word occurred in the document

Create word-count matrix in scikit-learn: https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
Example word-count matrix

- This movie is very scary and long
- This movie is long and is slow
- This movie is long, spooky good

![Example word-count matrix]

Latent semantic indexing (LSI) is one of the simplest topic models and uses truncated SVD

- Optimization over low rank matrices Z and W
 \[
 Z, W = \min_{Z,W} \| X - ZW^T \|_F^2
 \]

- Solution: Truncated SVD of $X = USV^T$
 \[
 Z = US_k, \quad W = V_k
 \]

- Diagram:

 ![Diagram showing matrix operations and dimensions](attachment:diagram.png)

 - X: New document representation
 - Z: Topics

 - d, n, k: Dimensions

 - d, n: New document representation
 - k: Topics
 - W^T: Topics
LSI “topics” can capture **synonymy** or similarity between words

- **Examples:**
 - “Car” and “automobile” (synonyms)
 - “School” and “education” (related)
- These related words will tend to have high weights in the same row of the topic matrix W^T

> “Automotive” topic may have high values on columns for “car”, “automobile” and “truck”.
LSI document representation groups documents even if their exact words do not overlap

- Example
 - One document only uses the word “car”
 - One document only uses the word “automobile”
 - The documents may have no exact words shared but are similar
LSI problem: Interpretation of topics and representations is challenging since values could be arbitrary

- SVD implicitly assume data is real-valued
 - (e.g., -2.1, 3.5, -1.2, 100.1)

- Yet input word-count matrix is discrete data
 - Non-negative integer values (e.g., 0,1,2,3,etc.)

- What do negative values mean?
 - (e.g., automobile is 1.1 but school is -0.5)

- What does the scale of these values mean?
 - (e.g., 4 or 0.2)
LSI problem: No generative model to create new data (less deep understanding)

▶ Like the difference between AEs and VAEs
 ▶ VAEs provide a way to generate fake new data

▶ “What I cannot create, I do not understand.” – Richard Feynman

▶ Previously we’ve considered mostly continuous generative models (GANs, VAEs, flows, etc.)

▶ What about discrete generative models?
The **categorical distribution** generalizes the Bernoulli (coin flip) distribution to many outcomes

- Intuition, rolling a d-sided dice
- Each side has a probability $p_s = \Pr(x = s)$
- In our case, d is the number of unique words in our corpus
The **multinomial distribution** is a simple model for count data (the “Ind. Gaussian” for count data)

- Intuition, roll d-sided dice N times and record count for each side
- Example: Flip a biased coin 10 times and count how many are heads and tails
The multinomial distribution is a simple model for count data (the "Ind. Gaussian" for count data)

- Word counts can be modeled as
 \[x \sim \text{Multinomial}(p; N) \]
 - \(p \) is the probability for each word
 - \(N \) is the number of words in the document
 - \(N = \sum_s x_s = \|x\|_1 \)
- Log PMF is:
 \[
 \log P_{\text{mult}}(x; p) = \log \frac{N!}{x_1! \cdots x_d!} \prod_{s=1}^{d} p_s^{x_s} = \sum_{s=1}^{d} x_s \log p_s + c
 \]
A mixture of multinomials adds complexity like mixture of Gaussians

- Let $x \sim \text{MixtureMult}(\pi, (p_1, \cdots, p_k); N)$
 - π is the mixture weights
 - p_j is the probability vector for the j-th multinomial component distribution
 - N is the number of words in a document

- The log PMF is:

$$\log P_{\text{mult}}(x) = \log \sum_{j=1}^{k} \pi_j P^j_{\text{mult}}(x) = \log \sum_{j=1}^{k} \Pr(z = j) P^j_{\text{mult}}(x)$$
Interpretation of multinomials and mixture of multinomials

- **Multinomial distribution**
 - Assumes all documents have the same “topic”
 - A topic is the probability for each word

- **Multinomial mixture**
 - Each component represents a topic
 - Each document only has one topic

- What if each documents have multiple topics?
Document-specific topic mixtures: Latent Dirichlet Allocation (LDA) defines a model where each document can have multiple topics.

Background: Dirichlet distribution is a distribution over the probability simplex

- The **probability simplex** is the set of vectors that are non-negative and sum to 1
 \[\Delta^d = \{x \in [0,1]^d : \sum x_s = 1\}\]
- Dirichlet is simplest distribution on this set
The generative process of LDA is a mixture of mixtures (or admixture)

- **Mixture generative process (assume \(N \) is fixed)**
 - Sample single topic \(z \sim \text{Categorical}(\pi) \)
 - Repeat \(\ell = 1 \) to \(N \):
 - Sample individual words \(w_\ell \sim \text{Categorical}(p_z) \) (where \(w_\ell \) are one hot vectors)
 - \(x = \sum w_\ell \) (equivalent to \(x \sim \text{Multinomial}(p_z; N) \))

- **LDA generative process (assume \(N \) is fixed)**
 - Sample mixture over topics \(\theta_i \sim \text{Dirichlet}(\alpha) \)
 - Repeat \(\ell = 1 \) to \(N \)
 - Sample topic of word \(z_\ell \sim \text{Categorical}(\theta_i) \)
 - Sample individual words \(w_\ell \sim \text{Categorical}(p_{z_\ell}) \)
 - \(x = \sum w_\ell \) (equivalent to \(x \sim \text{Multinomial}([p_1, \ldots, p_k] \theta_i; N) \))
Latent Dirichlet Allocation (LDA) defines a model where each document can have multiple topics.

After training, we can recover more interpretable topics and document representations

- Each topic is a probability distribution \(p_j \in \Delta^d \)
- Each document is represented by a probability distribution over topics \(\theta_j \in \Delta^k \)
- Can be seen as “discrete PCA” method
Estimating these generative models for text data

- Multinomial model
 - MLE has closed form solution (merely empirical frequencies)

- Mixture of multinomials
 - Could use EM algorithm or other mixture-based algorithms

- LDA
 - Variational inference (i.e., use ELBO as in VAEs)
 - MCMC/Gibbs sampling (often performs better)
Additional resources for topic modeling

▸ Gentle introduction to topic modeling

▸ More resources/tutorials

▸ Text analysis with scikit-learn
 https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html