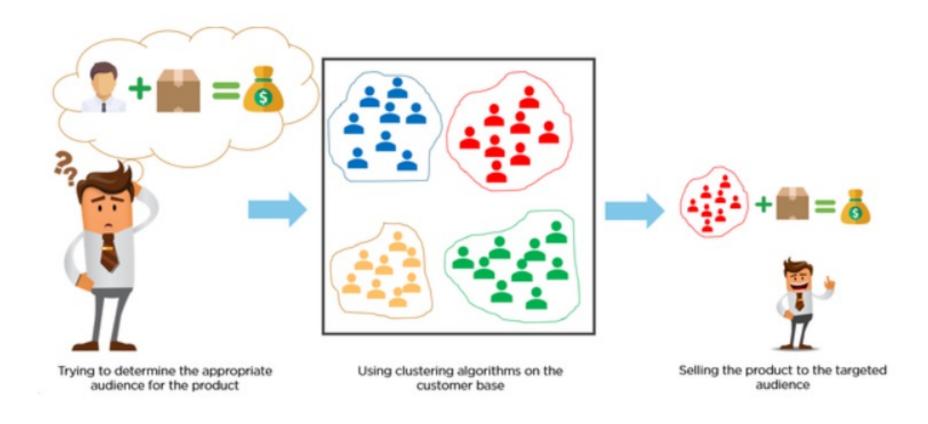
Clustering

ECE57000: Artificial Intelligence
David I. Inouye
2022

Clustering application: Market segmentation to group customers



https://medium.com/analytics-vidhya/customer-segmentation-for-differentiated-targeting-in-marketing-using-clustering-analysis-3ed0b883c18b

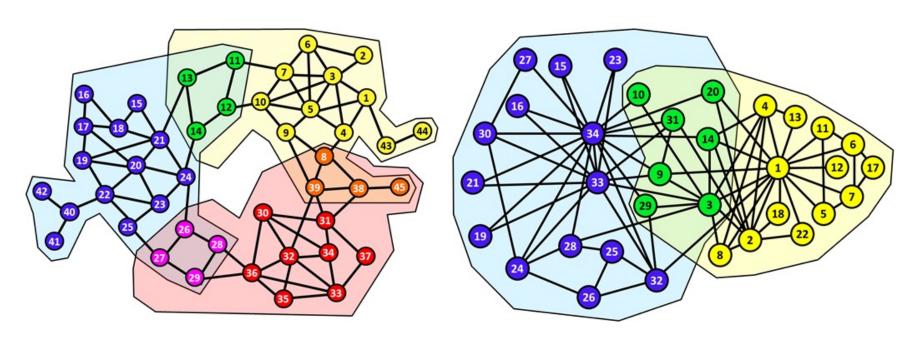
Clustering applications: Discretization of colors for compression

https://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_opencv.html

Clustering applications: Unsupervised image segmentation

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 34, no. 11, pp. 2274-2282, Nov. 2012, doi: 10.1109/TPAMI.2012.120.

Another clustering application: Clustering people in social networks



Zachary's Karate Club Network

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

https://bigdata.oden.utexas.edu/project/graph-clustering/

Outline

- Clustering applications
- K-means algorithm (Python demo)
- K-means relation to PCA

- Graph clustering
- Spectral clustering

The K-means algorithm is the most common clustering algorithm

(See demo of k-means algorithm and derivation)

Reformulation of k-means objective in terms of matrices

- $y_i \in \{1, ..., k\}$ is the cluster label for each instance
- $\triangleright z_i$ is the corresponding one hot vector to y_i

•
$$M = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_k \end{bmatrix} \in \mathbb{R}^{k \times d}$$
 is the matrix of mean vectors
• $\sum_{j=1}^k \sum_{x \in \mathcal{C}_j} \|x - \mu_j\|_2^2$ (Original objective)

$$\sum_{j=1}^{k} \sum_{x \in \mathcal{C}_{j}}^{k} \|x - \mu_{j}\|_{2}^{2}$$
 (Original objective)

$$= \sum_{i=1}^{n} \left\| x_i - \mu_{y_i} \right\|_2^2$$
 (Using y_i notation)

$$= \sum_{i=1}^{n} \left\| x_i^T - z_i^T M \right\|_2^2$$
 (row vector form)

$$= \sum_{i=1}^{n} ||x_i^T - z_i^T M||_2^2 \quad \text{(row vector form)}$$

$$= \sum_{i=1}^{n} \sum_{s=1}^{d} \left(x_{is} - \overline{z_i}^T m_s \right)^2 \quad (m_s \text{ is a column of } M)$$

$$= \left(\sqrt{\sum_{i=1}^{n} \sum_{s=1}^{d} \left(x_{is} - z_i^T m_s\right)^2}\right)^2$$

$$> = ||X - ZM||_F^2$$
 What does this look like?

Recap: Principal Component Analysis (PCA) can be formalized as minimizing the linear reconstruction error of the data using only $k \leq d$ dimensions

PCA can be formalized as

$$\min_{Z,W} ||X_C - ZW^T||_F^2$$

where

```
X_c = X - \mathbf{1}_n \mu_x^T \in \mathbb{R}^{n \times d} (centered input data) Z \in \mathbb{R}^{n \times k} (latent representation or "scores") W^T \in \mathbb{R}^{k \times d} (principal components) w_s^T w_t = 0, w_s^T w_s = ||w_s||_2 = 1, \forall s, t (orthogonal constraint)
```

- Solution
 - $W^T = V_{1:k}^T$ where $X_C = USV^T$ is the **SVD** of X_C
 - $PZ = X_c W$

K-means relation to PCA: One-hot vectors vs continuous vectors

- \blacktriangleright k-means clustering can be seen as reducing the dimensionality to k latent categories
 - ► Each category can be represented by a one-hot vector of length *k*

e.g., if
$$k = 3$$
, $z_i \in \{[1,0,0], [0,1,0], [0,0,1]\}, \forall i$

- Every instance can only "belong" to one category
- ▶ In dimensionality reduction techniques, the latent vectors can have non-zeros for all *k* latent dimensions
 - e.g., if k = 3, $z_i \in \mathbb{R}^3$, $\forall i$

K-means objective can be reformulated as seeking the best approximation to X with low rank constraint (k < d)

Original k-means objective

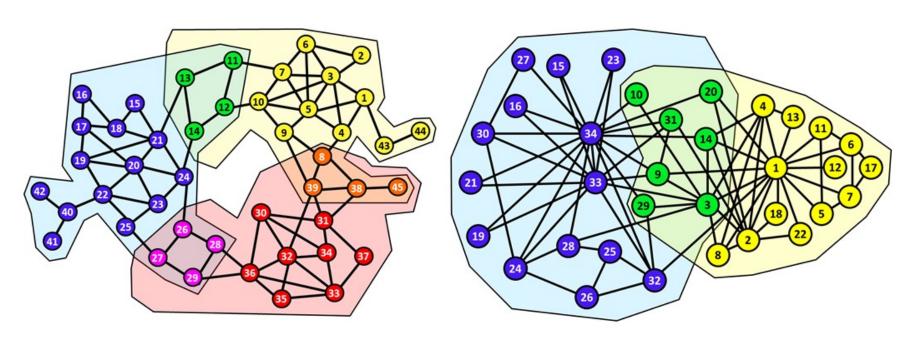
$$\min_{\substack{\mathcal{C}_{1}, \dots, \mathcal{C}_{k} \\ \mu_{1}, \dots, \mu_{k} }} \sum_{j=1}^{k} \sum_{x \in \mathcal{C}_{j}} \|x - \mu_{j}\|_{2}^{2}$$

Equivalent to the following objective

$$\begin{aligned} & \min_{\substack{Z,M \\ W \text{here } Z \in \{0,1\}^{n \times k}, \\ }} |Z_{ij}| = 1, \forall i \\ & \text{and } M \in \mathbb{R}^{k \times d} \end{aligned}$$

lacktriangleright K-means can be seen as **alternating** between solving for Z with M fixed, and solving for M with Z fixed

How can we cluster the nodes of a network (a.k.a. a graph) instead of a set of points?



Zachary's Karate Club Network

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

11

https://bigdata.oden.utexas.edu/project/graph-clustering/

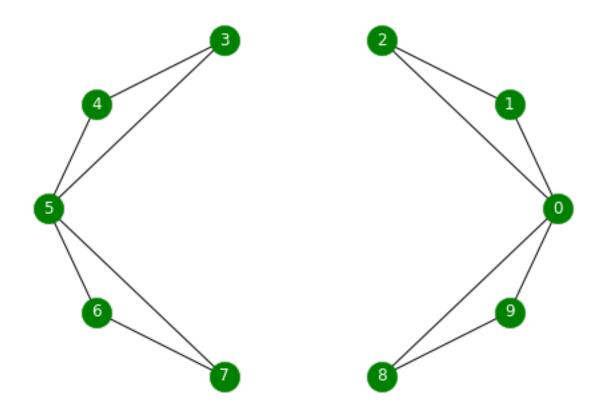
Graph clustering puts the nodes of a graph into clusters

What is a graph?

- How do we represent a graph?
 - Adjacency matrix
 - Graph Laplacian

How do we use graph Laplacian to cluster?

A <u>graph/network</u> is composed of nodes and weighted edges between the nodes



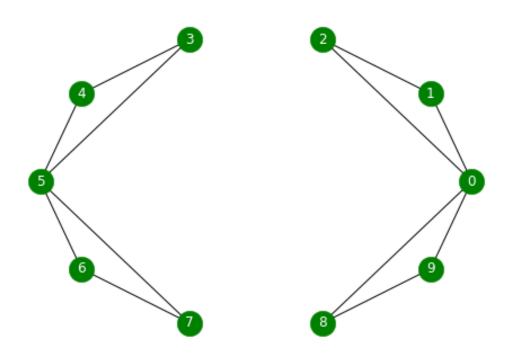
10 node graph with 2 disconnected components.

David I. Inouye

13

A graph can be represented as an adjacency matrix

- Nodes are represented by rows/columns
- Edges are encoded as 1s



```
[0 1 1 0 0 0 0 0 1 1]
[1 0 1 0 0 0 0 0 0 0 0]
[1 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 0 0 0 0 0]
[0 0 0 1 0 1 0 0 0 0]
[0 0 0 1 1 0 1 0 0 0]
[0 0 0 0 1 1 0 1 0 0]
[0 0 0 0 0 1 1 0 1 0 0]
[1 0 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 0]
```

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

The graph Laplacian is formed by subtracting the adjacency from the degree matrix

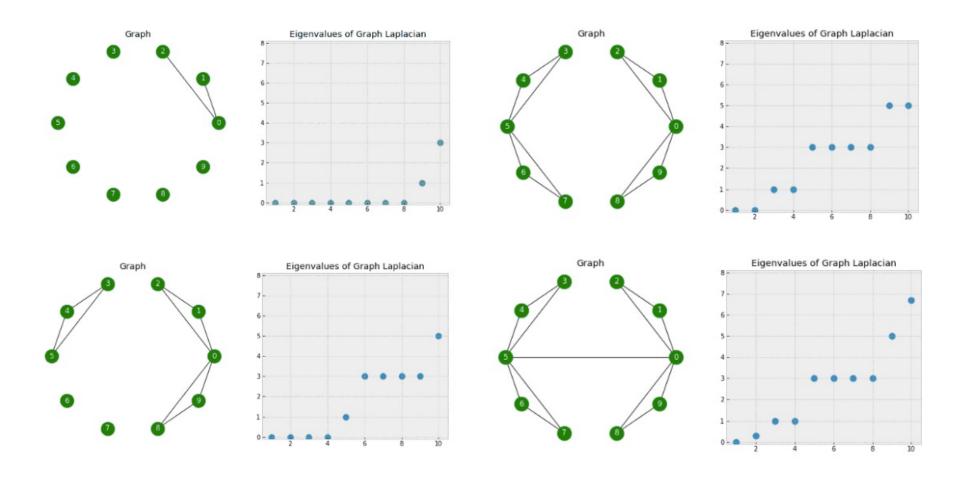
► The degree matrix is a diagonal matrix whose elements are the sum of the rows:

$$D = diag(A1)$$

Graph Laplacian is defined as:

$$L = D - A$$

The number of 0 eigenvalues of the Laplacian is the number of connected components



https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

The Fiedler vector (2nd to last eigenvector) can be used to create 2 clusters

► Intuitively, we could 0 the 2nd to last eigenvalue to get 2 components instead

Nodes are clustered based on whether their values in the Fiedler vector

$$y = 1(f > 0)$$

In theory, this is known as the minimal cut

Fiedler vector

0 0.234

1 0.333

2 0.333

3 - 0.333

4 - 0.333

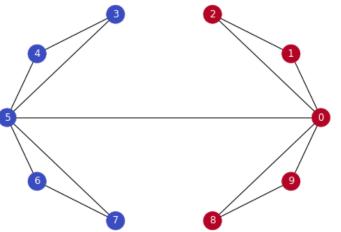
5 - 0.234

6 - 0.333

7 -0.333

8 0.333

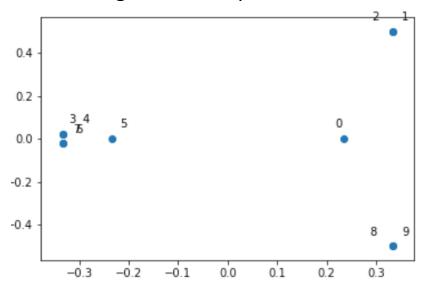
9 0.333

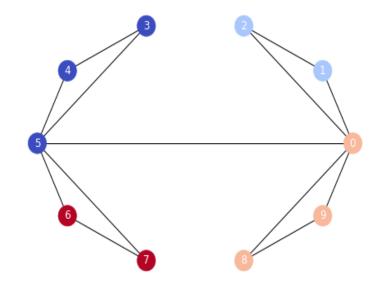


Spectral clustering generalizes to k>2 clusters by taking the lowest eigenvectors as a new node representation and then doing K-means

- ► We take the *m*-lowest eigenvectors to represent the data
- Then just run K-means

2 lowest eigenvector representations of nodes

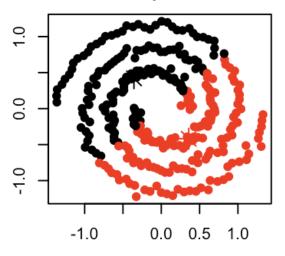


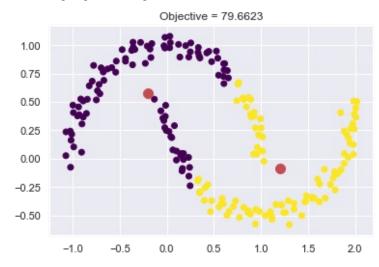


https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

Standard K-means clustering is limited to circular clusters with linear boundaries between clusters

- K-means is based on the clustering assumption of "compactness"
 - Points in a cluster are close to one another
 - Squared error objective within cluster
- This assumption may not be appropriate

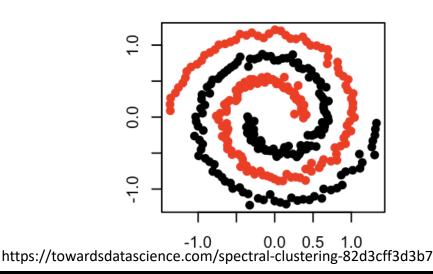


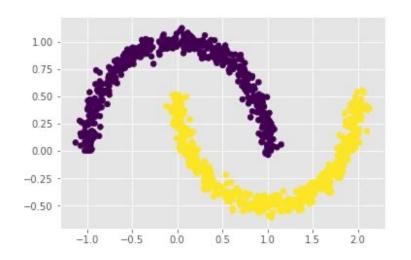


https://towardsdatascience.com/spectral-clustering-82d3cff3d3b7

Spectral clustering applied to vector data can be used to learn clusters based on "connectivity"

- Points that are "connected" to each other are clustered together
- This allows non-circular clustering

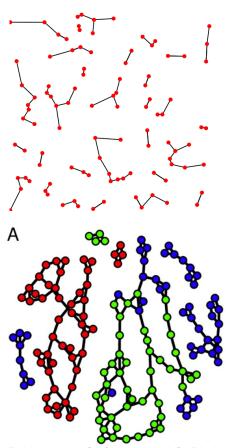




Spectral clustering: First create similarity graph based on data

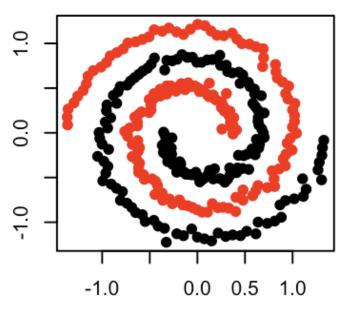
- K-nearest neighbor graph
 - Add edge for all k-nearest neighbors
- General similarity graph
 - Compute all pairwise similarity between points such as:

$$s(x,y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

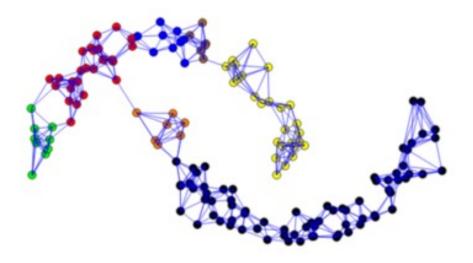


P. Veenstra, C. Cooper and S. Phelps, "Spectral clustering using the kNN-MST similarity graph," 2016 8th Computer Science and Electronic Engineering (CEEC), Colchester, 2016, pp. 222-227, doi: 10.1109/CEEC.2016.7835917.

Spectral clustering: Second, apply spectral clustering to resulting graph

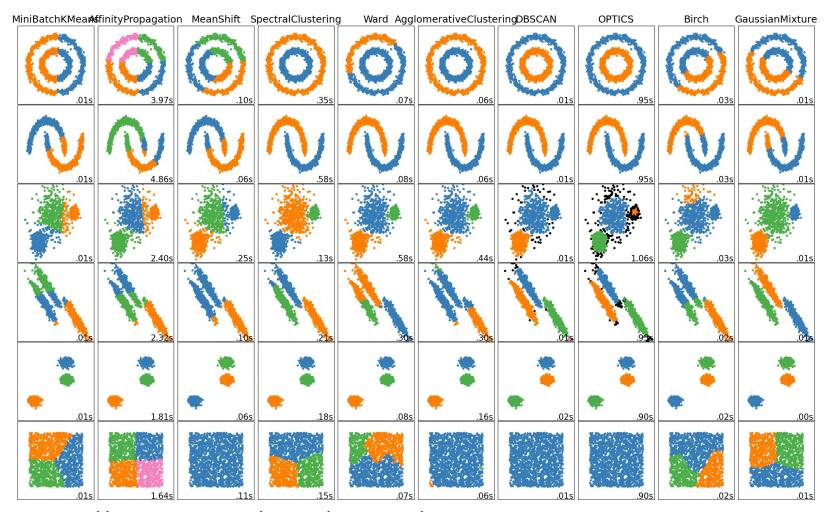


https://towardsdatascience.com/spectral-clustering-82d3cff3d3b7



http://math.ucdenver.edu/~sborgwardt/wiki/index.php/Spectral_clust ering

Many other clustering algorithms exist



https://scikit-learn.org/stable/modules/clustering.html

Simple demo of spectral clustering (time permitting)