Convolutional Neural
Networks (CNN)

ECE57000: Artificial Intelligence
David I. Inouye
2022

David I. Inouye 0]

Why convolutional networks?
> Neuroscientific inspiration

» Computational reasons

» Sparse computation (compared to full deep
networks)

» Shared parameters (only a small number of shared
parameters)

» Translation invariance

David I. Inouye 1

Motivation for convolution networks:
Gabor functions derived from neuroscience
experiments are simple convolutional filters [DL, ch. 9]

ddaESEERR
ddd=ESEERER
AdAddESSRN
HAAZSNNN
NS ZWEm
NNSNS2EZuw
NNSSE2PV
SNSSEEEBEP

David I. Inouye 2

Convolutional networks automatically learn filters
similar to Gabor functions [DL, ch. 9]

David I. Inouye 3

1D convolutions are similar but slightly different
than signal processing / math convolutions

gl 2 225t
r ENEN

g5 8 7 127

Padding or stride parameters alter the
computation and output shape

23251
f H Stride of 2

v

1D convolutions are similar but slightly different
than signal processing / math convolutions

gl 2 225t

f H Zero padding of 1
g2 5 87 127 1

Switch to demo of 1D

David I. Inouye 7

2D convolutions are simple generalizations to

matrices

X

Stride of 2

-

y

Switch to demo of 2D

David I. Inouye 9

3D convolutions are similar but usually channel
dimension is assumed

X E RCXhXW
y € :Rlxh’xw’

f € REXSrXfw

“fnXfu convolution” (channel dimension is assumed)

David I. Inouye

Multiple convolutions increase the output
channel dimension

Switch to demo of 3D, activation functions, and
pooling

Standard Convolutional Layer Terminology
DL, ch. 9]

Complex layer terminology Simple layer terminology

Next layer Next layer

i

Convolutional Layer

Pooling stage Pooling layer

] }

Detector stage:

. . Detector layer: Nonlinearity
Nonlinearity . .

)) e.g., rectified linear
e.g., rectified linear

A A

Convolution stage: Convolution layer:
Affine transform Affine transform
Input to layer Input to layers

David I. Inouye

Demo of CIFAR-10 CNN in Pytorch

Two important modern CNN
architecture concepts:
batch normalization and
residual networks

Batch normalization dynamically normalizes each
feature to have zero mean and unit variance

» Basic idea: Normalize input batch of each layer during the
forward pass

1. Input is minibatch of data Xt € R™*? at iteration t
2. Compute mean and standard deviation for every feature

2 .
u; = E|xf|, of = JIE (f =), vie(-,d)
3. Normalize each feature (note different for every batch)

t .t
Xij = ;
) O-'
J

4. Output X*¢

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

David I. Inouye

Because BatchNorm removes linear effects,
extra linear parameters are also learned

> The form of this final update is:
t t
Xij ="t VT bj

> Where y; and ,811- are Iear]nable parameters
> While u; and g;” are computed from the minibatch

> But how do we compute p% and o} about during
test time (i.e., no minibatchf?

» Use running average of mean and variance

ﬂ?étén — /1#1{1_”]’% _‘|1 (1 — A)ﬂlgatcltl
O-Zrun — AO_Z’run + (1 - A)Uzbatch

David I. Inouye

For CNNs, the channel dimension
is treated as a “feature”

> If the input minibatch tensoris Xt €
RMXEXAXW then the channel dimension c is
treated as a feature:

2
i = Elxf] o = [B[(ef —)]
vj e{1,-,c}
> Where the mean is taken over both the batch
dimension m and the spatial dimensions h and w

> Called “Spatial Batch Normalization”

> Variants: Instance, Group or Layer
Normalization

https://pytorch.org/docs/stable/nn.html#tnormalization-layers

David I. Inouye

BatchNorm can stabilize and accelerate training
of deep models

> To use in practice:

> Only normalize batches during training
(model.train())

> Turn off after training (model.eval())
» Uses running average of mean and variance

» Surprisingly effective at stabilizing training,
reducing training time, and producing better
models

> Not fully understood why it works

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2483-2493).

David I. Inouye

Demo of batch normalization in PyTorch

David I. Inouye

Residual networks add the input
to the output of the CNN

> Most deep model layers have the form:

y =f(x)
> Where f could be any function including a
convolutional layer like f(x) = a(Conv (U(Conv(x))))

» Residual layers add back in the input
y=fx)+x

> Notice that f(x) models the difference between x
and y (hence the name residual)

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 770-778).

David I. Inouye

A residual network enables deeper
networks because gradient
information can flow between layers Flx) +x

Figure 2. Residual learning: a building block.

weight layer

identity

34-layer residual

> A data flow diagram shows the
“shortcut” connections

» Consider composing 2 residual layers:
»zM = £ (x) + x
» 2@ = £,(zD) 4 2O
> Or, equivalently
z®) = f,(i() +x) + f1(x) + x
> |f the residuals = 0, then this is
merely the identity function

Images from: He, K., Zhang, X, Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 770-778).

David I. Inouye

Detail: If the dimensionality is not the same, then use
either fully connected layer or convolution layer to match

> In the 1D case, suppose f(x): R% - R™, then
we need to multiply x by linear operator to
match the dimension

y = f(x) + Wx, where W € R™*d

> Similarly, for images, if f(x): REXhXW _

, we can apply a convolution layer to
match the dimensions

y = f(x) + conv(x),
where conv(:):

RC "sxh!"xw'

chhxw Rc’xh’xw’

Demo of CNN with very simple residual network

U-Nets have an autoencoder structure with skip
connections for semantic segmentation task

» Concatenation +
convolution rather
than residual skip
connections

> Any#pretramed)
classification

backbone can be
used for encoder

> State-of-the-art
semantic
segmentation are
based on this idea

ir:mna%lg > > olile output
tile |7 || segmentation
4 £ map
\ 2P

H H

U D ﬁ’ Q’D’U =»conv 3x3, RelLU
1

10 8
l—l‘l_l

; copy and crop
*D*E] o D*D*D § max pool 2x2
45 @ 4 up-conv 2x2

:l’l:l’l:, =» conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

Figure from: Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

David I. Inouye

