PyTorch main functionalities

1. Automatic gradient calculations

2. GPU acceleration (probably won’t cover in class)

3. Neural network functions (simplify things a good deal)

(PyTorch has a very nice tutorial that covers more basics: https://pytorch.org/tutorials/beginner/basics/intro.html)

```python
In [1]:
import numpy as np
import torch # PyTorch library
import scipy.stats
import matplotlib.pyplot as plt
import seaborn as sns
# To visualize computation graphs
# See: https://github.com/szagoruyko/pytorchviz
# Uncomment the following line to install on Google colab
# !pip install -U git+https://github.com/szagoruyko/pytorchviz.git@master
from torchviz import make_dot, make_dot_from_trace
sns.set()
%matplotlib inline

In [2]:
# Torch and numpy
x = torch.linspace(-5, 5, 10)
print(x)
print(x.dtype)
print('NOTE: x is float32 (torch default is float32)')
x_np = np.linspace(-5, 5, 10)
y = torch.from_numpy(x_np)
print(y)
print(y.dtype)
print('NOTE: y is float64 (numpy default is float64)')
y = y.float().dtype
print('NOTE: y can be converted to float32 via `float()`')
print(x.numpy())
print(y.numpy())
```

tensor([-5.0000, -3.8889, -2.7778, -1.6667, -0.5556, 0.5556, 1.6667, 2.7778, 3.8889, 5.0000])
torch.float32
NOTE: x is float32 (torch default is float32)
tensor([-5.0000, -3.8889, -2.7778, -1.6667, -0.5556, 0.5556, 1.6667, 2.7778, 3.8889, 5.0000], dtype=torch.float64)
torch.float64
NOTE: y is float64 (numpy default is float64)
torch.float32
NOTE: y can be converted to float32 via `float()`

Torch can be used to do simple computations just like

In [2]:
```python
x = torch.linspace(-5, 5, 10)
print(x)
print(x.dtype)
print('NOTE: x is float32 (torch default is float32)')
```
PyTorch automatically creates a computation graph for computing gradients if requires_grad=True

IMPORTANT: You must set requires_grad=True for any torch tensor for which you will want to compute the gradient (usually model parameters)

These are known as the "leaf nodes" or "input nodes" of a gradient computation graph

Note that some leaf nodes will not need gradient (e.g., constant matrices like the training data)

Okay let's compute and show the computation graph
In [5]:
Explore gradient calculations
x = torch.tensor(5.0, requires_grad=True)
c = torch.tensor(3.0, requires_grad=True) # Change to compute grad over this variable too
y = c*x**2 + x+c
y = c*torch.sin(x) + x + c
print(x, x.grad)
print(y)
make_dot(y, dict(x=x, c=c, y=y), show_attrs=True, show_saved=True)

tensor(5., requires_grad=True) None
tensor(5.1232, grad_fn=<AddBackward0>)

Out[5]:
We can even do loops
x = torch.tensor(1.0, requires_grad=True)
y = x
for i in range(3):
 y = y*(y+1)
print(x, x.grad)
print(y)
make_dot(y, dict(x=x, y=y), show_attrs=True, show_saved=True)
Let's do this for a more complex ML example

Below is a simple linear regression error computation for a random model

```python
In [7]:
# A simple tensor example
# Data
rng = torch.manual_seed(42)
X_train = torch.randn(100, 5).requires_grad_(True)
y_train = torch.mean(X_train, axis=1)  # Average of x features

# Model
theta = torch.randn(5).requires_grad_(True)
y_pred = torch.matmul(X_train, theta)

# Error
```
mse_train = torch.mean((y_train - y_pred)**2)

make_dot(mse_train, dict(X_train=X_train, mse_train=mse_train, theta=theta), show_attrs=True, show_s=True)

Out[7]:

While only the parameters should "require_grad" in usual ML optimization, you could compute gradients for other inputs (e.g., creating adversarial examples via optimization)

In [8]:

A simple tensor example
Data
rng = torch.manual_seed(42)
X_train = torch.randn(100, 5).requires_grad_(True)
y_train = torch.mean(X_train, axis=1) # Average of x features

Model
theta = torch.randn(5).requires_grad_(True)
y_pred = torch.matmul(X_train, theta)

Error
mse_train = torch.mean(((y_train - y_pred)**2)

make_dot(mse_train, dict(X_train=X_train, mse_train=mse_train, theta=theta), show_attrs=True, show_s=True)

Out[8]:
Now we can automatically compute gradients via backward call

Note that tensor has grad_fn for doing the backwards computation

```
In [9]:
x = torch.tensor(5.0, requires_grad=True)
c = torch.tensor(3.0)  # A constant input tensor that does not require gradient
#y = c*x**2 + x+c
y = c*torch.sin(x) + x + c
print(x, x.grad)
print(y)
y.backward()
print(x, x.grad)
print(y)
```

tensor(5.0, requires_grad=True) None
tensor(5.1232, grad_fn=<AddBackward0>)
tensor(5.0, requires_grad=True) tensor(1.8510)
tensor(5.1232, grad_fn=<AddBackward0>)

A call to `backward` will free up the implicit computation graph (i.e., removed saved tensors)

```
In [10]:
try:
y.backward()
```
Trying to backward through the graph a second time (or directly access saved variables after they have already been freed). Saved intermediate values of the graph are freed when you call .backward() or autograd.grad(). Specify retain_graph=True if you need to backward through the graph a second time or if you need to access saved variables after calling backward.

Gradients accumulate, i.e., sum, from multiple backward calls

```
In [11]:
x = torch.tensor(5.0, requires_grad=True)
for i in range(2):
y = 3*x**2
y.backward()
print(x, x.grad)
print(y)
tensor(5., requires_grad=True) tensor(30.)
tensor(75., grad_fn=<MulBackward0>)
tensor(5., requires_grad=True) tensor(60.)
tensor(75., grad_fn=<MulBackward0>)
```

Thus, must zero gradients before calling `backward()`

```
In [12]:
# Thus if before calling another gradient iteration, zero the gradients
x.grad.zero_()
print(x, x.grad)
# Now that gradient is zero, we can do again
y = 3*x**2
y.backward()
print(x, x.grad)
print(y)
tensor(5., requires_grad=True) tensor(0.)
tensor(5., requires_grad=True) tensor(30.)
tensor(75., grad_fn=<MulBackward0>)
```

More complicated gradients example

```
In [13]:
x = torch.arange(5, dtype=torch.float32).requires_grad_(True)
y = torch.mean(torch.log(x**2+1)+5*x)
y.backward()
print(y)
print(x)
print('Grad', x.grad)
tensor(11.4877, grad_fn=<MeanBackward0>)
tensor([0.3, 1., 2., 3., 4.], requires_grad=True)
Grad tensor([1.0000, 1.2000, 1.1600, 1.1200, 1.0941])
```

Now let's optimize a non-convex function (pretty much all DNNs)

```
In [14]:
def objective(theta):
    return theta*torch.cos(4*theta) + 2*torch.abs(theta)
theta = torch.linspace(-5, 5, steps=100)
y = objective(theta)
```
Let's use simple gradient descent on this function.

```python
def gradient_descent(objective, step_size=0.05, max_iter=100, init=0):
    # Initialize
    theta_hat = torch.tensor(init, requires_grad=True)
    theta_hat_arr = [theta_hat.detach().numpy().copy()]
    obj_arr = [objective(theta_hat).detach().numpy()]
    # Iterate
    for i in range(max_iter):
        # Compute gradient
        if theta_hat.grad is not None:
            theta_hat.grad.zero_()
            out = objective(theta_hat)
            out.backward()

        # Update theta in-place
        with torch.no_grad():
            theta_hat -= step_size * theta_hat.grad
            theta_hat_arr.append(theta_hat.detach().numpy().copy())
            obj_arr.append(objective(theta_hat).detach().numpy())
    return np.array(theta_hat_arr), np.array(obj_arr)

def visualize_results(theta_arr, obj_arr, objective, theta_true=None, vis_arr=None):
    if vis_arr is None:
        vis_arr = np.linspace(np.min(theta_arr), np.max(theta_arr))
    fig = plt.figure(figsize=(12,4))
    plt.plot(vis_arr, [objective(torch.tensor(theta)).numpy() for theta in vis_arr], label='Objective',
             linestyle='-', label='Gradient steps')
    if theta_true is not None:
        plt.plot(np.ones(2)*theta_true, plt.ylim(), label='True theta')
        plt.plot(np.ones(2)*theta_arr[-1], plt.ylim(), label='Final theta')
    plt.legend()

# 0.05 doesn't escape, 0.07 does, 0.15 gets much closer
theta_hat_arr, obj_arr = gradient_descent(
    objective, step_size=0.15, init=-3.5, max_iter=100)
visualize_results(theta_hat_arr, obj_arr, objective, theta_true=theta_true, vis_arr=np.linspace(-5,
```
Putting it all together for ML models

PyTorch has many helper functions to handle much of stochastic gradient descent or using other optimizers

Example from https://pytorch.org/tutorials/beginner/examples_nn/two_layer_net_optim.html

In [16]:

```python
import torch
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use Adam; the optim package contains many other
# optimization algorithms. The first argument to the Adam constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

for t in range(500):
    # Forward pass: compute predicted y by passing x to the model.
    y_pred = model(x)

    # Compute and print loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the variables it will update (which are the learnable
    # weights of the model). This is because by default, gradients are
    # accumulated in buffers (i.e., not overwritten) whenever .backward() is
    # called. Checkout docs of torch.autograd.backward for more details.
    optimizer.zero_grad()

    # Backward pass: compute gradient of the loss with respect to model
A few more details autograd and backward() function

See https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html for more details.

Jacobian

\[ J = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \]

Backward computes Jacobian transpose vector product

\[ J^T \cdot v = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \begin{pmatrix} \frac{\partial l}{\partial y_1} \\ \vdots \\ \frac{\partial l}{\partial y_m} \end{pmatrix} = \begin{pmatrix} \frac{\partial l}{\partial x_1} \\ \vdots \\ \frac{\partial l}{\partial x_n} \end{pmatrix} \]

Simplification is when output is scalar than the derivative is assumed to be 1

Example: \( y = b^T x \), \( z = \exp(y) \)

- \( J_z = [dz/dy], v = [1], J_z^T v = dz/dy \)
- \( J_y = \begin{bmatrix} dy/dx_1 & dy/dx_2 & \ldots & dy/dx_n \end{bmatrix}^T, v = [dz/dx_1, dz/dx_2, \ldots, dz/dx_n]^T = \nabla_x z(x) \)

```
In [17]:
x = (2.0 * torch.ones(5).float()).requires_grad_(True)
b = torch.arange(5).float()
y = torch.dot(b, x)
y.retain_grad()
z = torch.log(y)
z.retain_grad()
z.backward()

def print_grad(a):
 print(a, a.grad)
print_grad(z)
print_grad(y)
print_grad(x)
```

tensor(2.9957, grad_fn=<LogBackward>) tensor(1.)
tensor(20., grad_fn=<DotBackward>) tensor(0.0500)
tensor([2., 2., 2., 2., 2.], requires_grad=True) tensor([0.0000, 0.0500, 0.1000, 0.1500, 0.2000])

```