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Density estimation finds a density (PDF/PMF) that 
represents the data (or empirical distribution) well

David I. Inouye 1



Motivation: Density estimation can be used to 
uncover underlying structure

▸Uncover multi-modal 
structure

▸Uncover skewness
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Mo6va6on: Density es6ma6on can be used to 
uncover underlying structure

▸Cluster structure
▸Gaussian mixture models
▸Poisson mixture models
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Motivation: Density estimation can be used to 
uncover underlying structure

▸Dependence structure of 
random variables (e.g., 
correlation)
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Mo6va6on: Density es6ma6on can be used for 
anomaly detec6on
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https://www.slideshare.net/agramfort/anomalynovelty-detection-with-scikitlearn



Parametric density estimation assumes 
a density model class parameterized by 𝜃

▸Assumption: Bernoulli density
𝜃 = 𝑝 , 𝑝 ∈ 0,1

▸Assumption: Exponential density
𝜃 = 𝜆 , 𝜆 ∈ ℝ!!

▸Assumption: Gaussian density
𝜃 = 𝜇, 𝜎" , 𝜇 ∈ ℝ, 𝜎" ∈ ℝ!!

▸Assumption: DNN-based model
𝜃 = “𝑎𝑙𝑙 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠”
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How do we determine which model in the model 
class is the best?

▸Classically, people have turned to information 
theoretic quantities
▸Entropy
▸Kullback Liebler (KL) Divergence
▸Maximum likelihood estimation (MLE)

▸However, there other estimators particularly for 
robust estimation
▸Regularized estimation
▸Robust estimation
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Informally, entropy measures the “amount of 
randomness/disorder” of a distribution

▸Formally, entropy for discrete 
variables
𝐻 𝑃 ⋅ = 𝔼 − log𝑃 𝑥 =*

!

−𝑃 𝑥 log 𝑃(𝑥)

▸Formally, differential entropy for 
continuous variables

𝐻 𝑝 ⋅ = 𝔼 − log 𝑝 𝑥 = .
!
−𝑝 𝑥 log 𝑝 𝑥 𝑑𝑥

▸Consider fair coin vs coin where 
both sides are heads
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distribu6ons

▸Formally, KL divergence for discrete variables
𝐾𝐿 𝑃 ⋅ , 𝑄(⋅) = 𝔼!∼# log

𝑃 𝑥
𝑄(𝑥)

=/
!

𝑃 𝑥 log
𝑃 𝑥
𝑄(𝑥)

▸Formally, KL divergence for continuous variables
𝐾𝐿 𝑝 ⋅ , 𝑞(⋅) = 𝔼$∼% log

𝑝 𝑥
𝑞 𝑥 = 2

!
𝑝 𝑥 log

𝑝 𝑥
𝑞 𝑥 𝑑𝑥
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

𝐾𝐿 𝑝 ⋅ , 𝑞(⋅) = 𝔼$∼% log
𝑝 𝑥
𝑞 𝑥

= /
!
𝑝 𝑥 log

𝑝 𝑥
𝑞 𝑥

𝑑𝑥

▸Not symmetric!
𝐾𝐿 𝑝 ⋅ , 𝑞 ⋅ ≠ 𝐾𝐿 𝑞 ⋅ , 𝑝 ⋅

▸Non-negative property
𝐾𝐿 𝑝 ⋅ , 𝑞 ⋅ ≥ 0

▸Equal distribution property: 
𝐾𝐿 𝑝 ⋅ , 𝑞 ⋅ = 0 ⇔ 𝑝(⋅) = 𝑞(⋅)
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One use of KL divergence is to es6mate 
distribu6on parameters only from samples

▸Let 𝑝 𝑥 denote the real/true distribution of 
the data
▸𝑝 𝑥 is unknown
▸We only have samples 𝑥& &'(

) from 𝑝(𝑥)
▸Let D𝑞 𝑥; 𝜃 denote an estimate of the true 
distribution
▸Parametrized by 𝜃

▸We want to find D𝑞 𝑥; 𝜃 that is closest to 𝑝(𝑥)
𝜃∗ = argmin

$
KL( 𝑝 ⋅ , D𝑞 ⋅; 𝜃 )
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One use of KL divergence is to estimate 
distribution parameters only from samples

▸We want to find D𝑞 𝑥; 𝜃 that is closest to 𝑝(𝑥)
𝜃∗ = argmin

$
KL( 𝑝 ⋅ , D𝑞 ⋅; 𝜃 )

▸Wait, but we don’t know 𝑝(𝑥), how do we do 
this?

▸Two main ideas for simplification
▸Constants with respect to (w.r.t.) 𝜃 can be ignored
▸Full expectation replaced by empirical expectation
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Deriva6on of minimum KL divergence 
with samples

▸argmin
$
KL( 𝑝 ⋅ , D𝑞 ⋅; 𝜃 )

▸= argmin
$
𝔼%∼' log ' (

)* (;$
▸= argmin

$
−𝔼%∼' log D𝑞 𝑥; 𝜃 + 𝔼%∼' log 𝑝 𝑥

▸= argmin
$
−𝔼%∼' log D𝑞 𝑥; 𝜃 + 𝐶

▸≈ argmin
$
−U𝔼%∼' log D𝑞 𝑥; 𝜃

▸= argmin
$
− ,
-
∑./,- log D𝑞 𝑥.; 𝜃
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Maximum likelihood estimation (MLE) is another way 
to estimate distribution parameters from samples

▸Likelihood function how likely (or probable) a dataset 
𝒟 = 𝑥& &'() is under a distribution with parameters 𝜃

ℒ 𝜃;𝒟 = 8𝑞 𝑥(, 𝑥*, … , 𝑥); 𝜃
▸If we assume samples (or observations) of dataset are 

independent and identically distributed (iid), then

ℒ 𝜃;𝒟 =:
&'(

)

8𝑞 𝑥&; 𝜃

▸Often simplified to the log-likelihood function

ℓ 𝜃;𝒟 = log ℒ(𝜃;𝒟) = ∑&'() log 8𝑞 𝑥&; 𝜃
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Maximum likelihood (MLE) is another way to 
es6mate distribu6on parameters from samples

▸Optimize the following

𝜃∗ = argmax
1
ℓ(𝜃;𝒟) = argmax

1
-
234

5

log 0𝑞 𝑥2; 𝜃

▸Equivalent to

𝜃∗ = argmin
1
−
1
𝑛
-
234

5

log 0𝑞(𝑥2; 𝜃)

▸Wait, doesn’t that look familiar?
▸MLE equivalent to minimum KL divergence!
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MLE is not the only way or necessarily the best 
distribution estimator

▸Corrupt/noisy samples (related to robustness)
▸Cashiers using 1111 for birth year: 908 years old
▸One star ratings

▸Finite (sometimes small) number of samples
▸One or two coin flips, Bernoulli
▸1D with one sample, Gaussian
▸2D with two samples, multivariate Gaussian

▸Examples: Median or regularized MLE
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Mul6variate Gaussian

▸Definition

▸Properties and intuitions

▸MLE estimator for multivariate Gaussian

David I. Inouye 17



The most ubiquitous multivariate distribution is 
the multivariate Gaussian/normal distribution

▸Compare univariate to multivariate:
▸𝜇 is mean and Σ is covariance

𝑝 𝑥 =
1

2𝜋 𝜎"
exp −

1
2
𝑥 − 𝜇 "

𝜎"

𝑝 𝑥#, … , 𝑥$

=
1

2𝜋
!
det Σ

exp −
1
2
𝑥 − 𝜇 "Σ#$ 𝑥 − 𝜇

▸Θ = Σ#$ is called the precision matrix (or inverse covariance)
▸Σ and Θ must be positive definite Σ > 0
▸(Suppose Σ = 𝐼, suppose 𝜇 = 0)
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Mul6variate Gaussian is independent “spherical” 
Gaussian that is rotated and scaled
Σ!" = 𝑈Λ!"𝑈# = 𝑈Λ!

"
$ Λ!

"
#𝑈$ = 𝑈Λ!

"
# 𝑈Λ!

"
#
$

𝑥$Σ!"𝑥 = 𝑥$ 𝑈Λ!
"
# 𝑈Λ!

"
#
$
𝑥 = Λ!

"
#𝑈𝑥

$
Λ!

"
#𝑈𝑥 = 𝑧$𝑧

𝑧 = Λ!
"
#𝑈𝑥 ⇔ 𝑥 = 𝑈$Λ

"
#𝑧

𝑝𝒩 𝑥; 𝜇 = 0, Σ ∝ exp −
1
2
𝑥$Σ!"𝑥 ∝ exp −

1
2
𝑧$𝑧 ∝ 𝑝𝒩 𝑧; 𝜇 = 0, Σ = 𝐼
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2012.



Marginal and conditional distributions are 
Gaussian and can be computed in closed-form

▸2D case: 
𝒙 = 𝑥,, 𝑥" ∼ 𝒩 𝜇 = 𝜇,, 𝜇" , Σ =

𝜎," 𝜎,"
𝜎", 𝜎""

▸Marginal distribuUons:
𝑥, ∼ 𝒩 𝜇 = 𝜇,, 𝜎" = 𝜎,"
𝑥" ∼ 𝒩 𝜇 = 𝜇", 𝜎" = 𝜎""

▸CondiUonal distribuUons:
𝑥,|𝑥" = 𝑎
∼ 𝒩 𝜇 = 𝜇, +

𝜎,"
𝜎""

a − 𝜇" , 𝜎" = 𝜎," −
𝜎","

𝜎""
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Gaussian marginals does NOT imply jointly 
multivariate Gaussian (converse NOT generally true)
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Affine transformations of multivariate Gaussian 
vector are also multivariate Gaussian

▸If 𝑥 ∼ 𝒩(𝜇, Σ) and 𝑦 = 𝐴𝑥 + 𝑏, then
𝑦 ∼ 𝒩 𝐴𝜇 + 𝑏, 𝐴ΣAA .

▸Special case: Marginal distribution when 𝐴 is:
𝐴2 = C 1, if 𝑖 = 𝑘

0, otherwise
then 𝑦 = 𝑥B ∼ 𝑝 𝑥B .

▸Key point: Marginals, conditionals and affine 
functions known in closed-form.
▸Consequence 1: Easy to manipulate.
▸Consequence 2: Gaussians and linear ideas play 
nicely with each other.
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MLE of mul6variate Gaussian can be computed 
via empirical mean and covariance matrix

▸Log-likelihood of multivariate Gaussian (𝜇 = 0)

−
1
2
log Σ −

1
2𝑛
]
./,

-

𝑥.0Σ1,𝑥. + 𝑐𝑜𝑛𝑠𝑡

▸Three main identities:
▸? @AB C

?C
= 𝐴DE

▸Tr 𝑥E𝐴𝑥 = Tr 𝐴𝑥𝑥E

▸?FG H$
?I

= 𝐴

▸Hint: Do derivative with respect to Σ1,
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Simplification and derivation of MLE for 
multivariate Gaussian

▸𝐿 Σ;𝒟 = − ,
"
log Σ − ,

"-
∑./,- 𝑥.0Σ1,𝑥.

▸= -
"
log Σ1, − ,

"
∑./,- Tr(𝑥.0Σ1,𝑥.)

▸= -
"
log Σ1, − ,

"
Tr Σ1, ∑. 𝑥.𝑥.0

▸ 23
24%&

▸= -
"
Σ − ,

"
∑. 𝑥.𝑥.0 = 0

▸Σ = ,
-
∑. 𝑥.𝑥.0
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𝜕 log A
𝜕A

= 𝐴!"

𝜕Tr 𝐴𝑋
𝜕X = 𝐴



Non-parametric density estimation

▸Motivation

▸Histograms
▸Choosing k
▸Choosing bin edges

▸Kernel density
▸Choosing bandwidth
▸Curse of dimensionality again
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Why non-parametric density estimates?

▸Parametric densiUes are 
excellent if the assumpUons are 
correct (e.g., Gaussian)

▸However, the distribuUons may 
not align with the assumpUons
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Histograms are the simplest density estimators

▸Setup bin locations
▸Count number of samples that fall in each bin
▸Normalize to be a density
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2D Histograms can be created
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How to select the number of bins (usually 
denoted 𝑘)?

▸Too few bins will 
underfit

▸Too many bins will 
overfit

▸ML approach: 
CV/Test log likelihood
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Drawbacks: Histograms can depend on bin edges 
and are not smooth
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https://www.slideserve.com/geona/introduction-to-non-parametric-statistics-kernel-density-estimation



Kernel densi6es overcome this drawback by 
placing a Gaussian density at each point

▸Kernel density has the following form:

𝑝 𝑥 =
1
𝑛
1
01$

2

𝑝3456 𝑥 − 𝑥0 =
1
𝑛
1
01$

2

𝒩 𝑥 − 𝑥0, 𝜎
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Similar to number of bins, the key parameter for 
kernel densities is the “bandwidth” or 𝜎 parameter

▸Bandwidth can be selected via CV/Test log 
likelihood (similar to number of histogram bins)
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