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Diffusion models have become state-of-the-art
for generative modeling

* See demo: https:/ /huggingface.co/spaces/stabilityai/stable-diffusion
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Overview

* Model
* Diffusion models as hierarchical VAEs with fixed encoders
* Training
* Perspective 1: Reweighted joint ELBO
* Perspective 2: Multiple VAE ELBOs with shared parameters
* Perspective 3: Multiple denoising AEs with shared parameters
* Sampling
* VAE-based Markov sampling (DDPM)
* Implicit (deterministic) sampling (DDIM)



Model: Diffusion models define
forward and reverse diffusion processes

Simple VAE

(Same-Dimension)

* Ditfusion models can be viewed as hierarchical VAEs
* Forward process = hierarchical encoder
* Reverse process = hierarchical decoder

* Several critical differences from VAE
* Involves multiple latent representations rather than one
* Hierarchical encoder is fixed (i.e., no trainable parameters)
* Parameters 0 are shared between decoder steps
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Model: The forward process 1s detined by a fixed
Markov transition distribution q(x;|xs_1)

* The forward process starts at the data distribution, 1.e.,
q(x0) = Paata(X)
* Define forward process via Markov transition
q(xelxe_1) = N(xt; p=w,(t)x;_1,Z = Wa(t)l)
* where Wu(t) and W, (t) can be functions that vary across time t

* For simplicity, we will use w, (t) = 1 and w;(t) = 1 so that above simplifies
q(xelxe—1) = N(xp;u=x¢-1,2=1)

* Notice there are no trainable parameters



Model: The forward process can be collapsed into
a single step, i.e., q(X¢]|xg) is known in closed-form

Distribution-based derivation

* The joint distribution 1s Gaussian because
each o.f the components are conditionally
(Gaussian

* q(x1.¢]x0)

¢ = H§'=1 q(xyr|xpr_q)

© = q(xqlx0)q(xzlx)q(xs]x3) ...

© = N(xq|xg, DN (x2|x0, DN (x3]x3, 1) ...

* The marginal of a Gaussian is also
Gaussian, i.e.,

q(xelxg) = N(xe;pu=x9,Z=1¢-1)

Random variable derivation
* By the definition of q(x;|xt_1)

Xt = Xt—1q + €Er—1 where Er—1 ™~ N(O, I)
* Xt = Xpe—1 t €
* =Xty + €+ €1
* =Xt_3t €3t € 3T €E_q
R
* Hact: Adding Gaussian RVs 1s another
Gaussian RV distributed so that
* Xt =Xg+ Zf;:lo €p1 = Xg + €
* Where € ~ N(0,t - 1)
* Thus, x; ~ N (xq, t - 1)



Model: The forward process can be collapsed into
a single step, i.e., q(x¢]|xg) is known in closed-form

* What does this mean intuitively?

q(xelxg) = N(xp;u=%x0,2=T-1) & xp ~ N(x0, T - 1)
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Model: The reverse transition conditioned on
X is known in closed form (q(x¢_q|x¢, X))

* The ideal reverse transition p*(x¢_1|x¢) would be the posterior of q
qOce|xe—1)q(xe—1)
q(x¢)

p*(xe—1lxe) = qlxe—qlxe) =
* However, this is intractable ®

* However, if conditioned on X, the posterior is tractable

* q(xt—llxt)xO)
o« — a(Xe|Xe—1, X0)a(xe-11%0)

q(X¢|xo)
e

a(x¢|xo)
. — N (xe;u=x¢_1,Z=DN (Xt —1;4=x0,2=(t—1)-I)

N(xe;u=x9,Z=t-I)
v (s = (1 e B = (1-2)1)

(Markov property of q, i.e., Xt only dependent on X¢_q)

Derivation uses the fact each can be expressed as the exponential of a quadratic function, i.e., a Gaussian. These quadratic functions can be
combined to form a single quadratic in terms of X;_; and then used to derive the mean and variance in terms of t, x; and X,.



Model: The reverse transition conditioned on
X is known in closed form (q(x;_1|x¢, Xg))

* What does this mean intuitively?

q(xe—1lxe,x0) = N (xt—li ) )
» O

q(x_1|xp, x0) Notice that we defined the forward direction q(x¢|x;—1)
-------------------------------- but derived the conditional inverse q(x;_q|x:, Xp)

Suppose t = 4

(g
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Model: The reverse process approximates the
posterior transition ot q

* Prior distribution p(x)
* Theory: As T — 0, q(x7) = N (x7; 4 = Ugata 2 = Zgata + T + 1).

* Therefore, we choose a Gaussian prior distribution
(note that this is with our simplified wy, (t) and ws(t) and is only approximate if T is finite)

p(xr) € N (X5 1 = Ugatar 2 = Zaata + T - 1) (z CI(xT))
* Reverse transition distribution pg (x;_q1|x;)

* Theory: As the number of timesteps approaches infinity, 1.e., T — oo, then
q(x¢_q1|x¢) is known to be Gaussian.

* Therefore, we choose the approximate posterior to be Gaussian

(note with finite timesteps the posterior is not Gaussian)

Po(Xe—1lxt) = N (xe—q; 10 = pg(xe), 1) (z Cl(xt—1|xt))



Training(1): Minimizing joint negative ELLBO
across all timesteps

* Remember the negative evidence lower bound (ELBO) from VAEs

pg(x,2)
—ELBO(x; pg,qf) = Iqu [— log le(Z|x) = [qu[— logpg(xlz)] + KL (qf(zlx),pg(z))

Computable, see Computable in closed-form for
reconstruction error slides Gaussian distributions

* Now let X = xg and Zz = Xq.r 1n the above equation

o _ . B po(xXo,Xx1.1)
ELBO(xo, Po, q) T IIE‘:CI(xO:T) [ logq(xl:Tle )
o — [Eq[— log pg (xolx1.7)] + KL(C[(X1:T|XO);I99 (X1:T))

¢ = [Eq(x1|x0) [_ logpg (xolxl)] + KL(CI(xl:Tle)' Po (xl:T))
(Markov property)




LLemma: Chain rule of KI.

Chain rule of KI.
+ KL(q(x),p(x)) = T Eqeep[KL(q(xilx<y), p(xilx<y)]

Inverted chain rule of KL (equivalent
* KL(q(x),p(x)) = X1 Eqee. p[KL(q(xil250), p(Oxi]251))]

Derivation for two dimensions

1 —

q(x1,x2)
p(x1,X2)

KL(q(xl) xZ) p(le xz)) [Eq(xl X) lOg

q(1)q(xz 1)) |
q(xq1) IECI(szCl) [logp(x;p(x;xi)

q(x1)
p(x1)

+ [Eq(lexl) [log p(x,|x1)

(xzlxy)
= By log 252 £ ]]

= KL(q(x1), p(x1)) + [Eq(xl)[KL(q(lexl),p(lexl))]




Dittusion ELLBO: Simplification using KL
chain rule and Markov property

For notational simplicity, let X741 be a dummy random variable that is

* KL(q(x1.rx0), o (x1:7)) independent of all other random variables (the distribution does not matter).
¢ =Yg Eg(eselxo) [KL(q(xt|x>t, X0), Do (xt|x>t))] (KL chain rule)

« =i E q(xst |x0) :KL(q(xt_1|x2t,x0),pg (xt—1|x2t))]

o = YT E (., 1x0) KL(q(xe—1]xt, %0), P (e—11x:)) | (Markov properties)

* = 2123 Eqta, o) [KL(q (112, 20), Do (s %))

* = thz Eq(xt |xo)[KL(q(xt_1|xt, X0), Do (xt_1|xt))] + KL(C[(XT|X0), p(XT))

Proof of Markov property for q and an alternative derivation that is usually used are provided at the end.



Diffusion ELLBO: A reconstruction term and
many KL terms

* —ELBO(x¢; pg, q)
° — ]EC[ [—logpe (xlel:T)] + KL(CI(xl:Tle)J Po (xl:T))

(X = xgand z = xq1.7)

* = Eq(x,xo) [ 108 Do (X0 lx1)] + KL(q(X1:T|xo);P9 (xl:T))
(Markov property)

* = Eqe,1x0) |—logpg(xglx1)] (Lo Initial reconstruction term, e.g., dequantization)
* + ZZ::Z Eq (e, 1x0) [KL(Q(xt—1 |[Xt, %0), Po (Xp—1 |xt))] (L1 to Ly—q KL terms)
. +KL(q(xT|x0),p(xT)) (Lt “ptior” term, )
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The KL terms simplify to MSE between true
posterior mean and predicted mean

e KI. between two (Gaussians
1 1 (of
KL (N (o, 08 1, N3 (1, 07D)) = 5= lluws = woll3 +5 (2 — d + log Z)

207 2 \o
. KL(CI(xt—1|xt»xo)»p9 (xt—llxt))
e = KL (]\r (#q = (1 —%) X¢ +%x0,2 = (1 —%) 1),N(H9(xt' t),l))

o = |lug — e G, O[] + C



The KL term can equivalently be written as
predicting the noise

* We can eguivalently rewtite g in terms of X; and the noise & ~ N (xo, tI)

1 1 1 1 . 1,
. uq=(l—z)xt+;x0=(l—z)xt+;(xt—et)=xt—;et

* We can also re-parameterize tg(x¢, t)
© po(xp, t) = x¢ — %Ee(xt: t)
* Now this simplifies to predicting Gaussian noise
* KL(q(xe—1]x¢, %0), po(xe—11x¢)) = Tif ”.Uq — ug(xt, ﬂ”; +C

1 1 2
Xt = L€ — (xt _zfe(xt, t))Hz +C

2
_%(gt - Eg(xt, t))”z + C
1

c= Ll e DIEHC (=5 ]|1g — oG DI, + C)



Training(1): Reweighted ELLBO simplifies to

predicting noise from noisy input at each time ¢

* ming g,y [—ELBO(x0; pg, )]

* =ming Eg(x,x)[—108DPe(x0lx1)] (Lo in practice is dequantization term)
* + i [Eq(xo,xt)[KL(Q(xt—l ¢, X0), Do (Xt—llxt))] (L to Ly—q KL terms)
. +IEq(x0)[KL(q (xrlxo), p(x1))| Ly “prior” term, constant w.r.t. 6)

¢ = mein Eg(x,|x) [~ 108 o (x0|x1)] + Zfzz [Et,xo,'é't [ Hgt — €o (XO + €, 0”2]

* In practice, this objective is simplified to

m@in [Ete{l,...,T},xO,ét[”gt — €g (XO + ét; t)”%]

* By an approximation of Ly with L etc.
* And dropping scaling of



Training(2): Multiple VAEs with fixed encoder
and shared parameters

meln ]EtE{l ..... T},Xo,ét[”gt — 69 (XO 4 é’t’ t)”%]
* Encoders based on t: g¢(z|x) = N (x, tI)

* Decoders based on t: pg, (x|z) = N(Z — teg,(2), tI)

(prior p(z) is irrelevant for training)

* For any t, the VAE objective would be:
X — ((x + te) — teg, (x + te )) Hz] = r%itn E, e “|e — Egt(X)”z]

. Thelse could all be run in parallelz ,
‘=% min Ey ¢ [”e —€g,(x + te)||2] =min Ereqr,.. e [”e — €q,(x + te)||2]

* If parameters 6 are shared, i.c., €g,(2) = €g(2, 1), the objectives are
equivalent!

. 1
¢ mlngt IEx,E t_2



Training(3): Multiple denoising AEs

mein Ereq1, . Tyxo 2 L€ — €9(x0 + € 5]
Identity encoders f;(x) = x
Decoders: g¢(z) = z — teg, (2)
Noise added to input: n.(x) = x + te
For any t, the denoising AE objective with MSE would be:
* ming, E, . [”x - gt(ft(x + 6))”2]
. = n}gitn Eyxe [llx — (x + te — teg(x + te) 5]

+ =minEye [tP]le — € (x + te) 3]
t

Again, global objective equivalent if
* Parameters 0 are shared, i.c., €g,(2) = €4(2,t)

* All objectives combined where the t-th objective has a weight of tlz



Sampling(1): DDPM sampling simply samples

the generative model sequentially

1
* Remember: pg(x;_1[x;) = N (xt_1|/,t — Xt — 7 €6 (x¢) t),l)

* Sample from prior distribution x7 ~ p(x7)
Fort=T,...,1do:

e z~N(0,I)

© Xi_q = X; — %eg(xt, t) + z

* For the last step, we may also quantize using rounding to get integer
value for pixels



Sampling(2): DDIM redetines the forward process
in terms of q(x;_1|x¢, xg) instead of q(x¢|x,—1)

* DDIM notices that the training objective only depends on q(x;|xg) rather
than the jOiﬂt Q(xl:Tl.X'O)

* Thus, there exist many joint distributions q(xq.7|xg) that have the same marginals
q(x¢|xg) as DDPM

* Instead of defining q(x;|x;_1), DDIM defines

* q5(x1.71%0) € q5(x7]x0) HZ:Z qo(xe—1lxe, x0)

* qo(xr|xg) € N (x0, T - 1)

* qo(Xe_11xe,x0) & N (x—1; 4 = h(xs, xg,0:),2 = 0:1) (Not sure the form for our
simple example.)

e DDIM derives that q, (x¢|xg) = q(th |%0), i.e., it matches the marginals of
DDPM, o=|oy,05,07]

* Thus, the same training objective can be used!



Sampling(2): DDIM then redefines pg (x¢—q1|x¢) in
terms of q,(X¢—q1|X¢, Xg) where X is approximated

* Note that we can approximate X using €g (X, t)
* Xo & Xo = fo(xp, t) = x¢ — teg(xy, t)
* The generative model pg can now be defined using q,

. w | N (f(xy, 1), 0fD), ift =1
Po(xe-1lxe) £ qo(Xt-11xe fo(xs, t)), otherwise
. Remember that[DDIM matches the marginals of DDPM, o=
lo1, 02, , 07]
* Thus, as a special case, we can get by letting  — 0!

* Also, we can choose a subset of timesteps that match—thus enabling faster
sampling with the €g(x¢, t)

* Again, we can use a pretrained version of €g and just sample differently



Resources

* Excellent diffusion models blog post
* https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

* Excellent score-based generative models blog post

* https://yang-song.net/blog/2021/score/ (in particular, notice section
Connection to diffusion models and others)

* Score-based comprehensive literature
* https://scorebasedgenerativemodeling.github.io/
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A few important diffusion model works

* Diffusion Models: Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium
Thermodynamics.” ICML 2015.

* Sohl-Dickstein et al. [2015] introduced the learning of diffusion models as forward noising and
reverse denoising process
* Denoising Diffusion Probabilistic Models (DDPM): Jonathan Ho et al. “Denoising diffusion
probabilistic models.” NeurIPS 2020.
* Ho et al. [2020] made several key design decisions and connected to Noise-Conditioned Score
Networks (NSCN) [Yang & Ermon, 2019]
* DDPM+++: Alexander Nichol & Dhatiwal. “Improved Denoising Diffusion Probabilistic Models.”
ICML 2021.
* Makes several engineering improvements over DDPM including faster sampling and better
likelihood
* Denoising Diffusion Implicit Model (DDIM): Jiaming Song et al. “Denoising diffusion implicit
models.” TCLR 2021.

* Song et al. [2020] proposed a non-Markovian sampling procedure that includes a deterministic
variant (note: the training is the same as DDPM)



Related score-based modeling key papers

* Noise-Conditioned Score Networks (NCSN): Yang Song et al. “Generative
Modeling by Estimating Gradients of the Data Distribution.” NeurIPS 2019.

* Trains many score functions (i.e., V, log p; (%)) at multiple noise levels t and uses
Langevin sampling for generatlon

* Yang Song et al. “Score-Based Generative Modeling through Stochastic
Difterential Equations.” ICLR 2021.

e Unifies diffusion and score-based methods under common framework
 (Generalizes DDPM and NCSN to continuous time
* Can convert stochastic diffusion model to continuous normalizing flow

* Tero Karras et al. “Elucidating the Design Space of Diffusion-Based
Generative Models.” NeurIPS 2022.

* Unifies the key practical/engineering design decisions for diffusion models



Extra derivations



Lemma: Markov property for q(xX¢_q1|Xs¢, Xo)

q(x¢—11%2¢,%0)
_ QCcxelxe—1,20)q (xe—1|%0)
q(xx¢|xo)
_ QCczelxe-1)q(xe—1|%0)
q(x>¢|xo)
q(xe—1|x0) Hf/=t q(xr1x,_,)

q(x¢]xo) Hfl=t+1 Q(xt’ |th_1)

q(xe-11x0)qCeelxe—) ITr_,, , a(x,rlx,0_ )
Q(xtle) H;I;I=t+1 Q(xt’ |xt’_1)
q(xe—11x0)q(x¢|x-1,%0)

q(xe|xo)
= q(x¢—1]x¢, x0)




Alternative simpliciation ot KL term from
ELLBO

* = Eqirixg |
* = Eqleirixo |
* = Eqxirixo
* = EqGeirixo
* = EqGeirixo |
« =E

KL(Q(X1:T|X0)»I99(9C1:T)) = IECI(X1:T|X0) [log

q(X1.7|X0)
Pe(x1:T)

] q(xlle) Hg‘:z q(xt|xt—1’x0)
pCer) T, po(Xe—1|Xt)

q(x1.1]%0)

= N2 IEq(xt|x0)[KL(Q(xt—1|xt» x0), Do (xt—1 Ixt))] + KL(q (xr[x0), P(XT))

Falos e+ 108
Salos e a8
Slaon S 1o 5]
alos G Flog ]
Falog®y e o8

Xe|X
2{:2108 qa(X¢|Xo)

a(X¢—1|%o)
« = —logq(x;]xo) +logq(xz|xe) — log q(xz|x,)
+log q(x3]xp) -+ + log q(xr |xo)
* = —logq(x,|xo) + logq(xr|xo)
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