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Standard MI. assumes
all data 1s relevant

[ Give me all your data! S

\ 5 °
But what if the data , Machine

is biased or contains 4 Learning
spurious correlations? '

I/ System

Don’t worty,
I'll figure it out.




What 1f some data is
assumed (or designed) to be zrrelevant?

* Fair learning

* Sensitive attributes (e.g., race) are designed to be irrelevant for social applications

(e.g., loan approval)

* Robust learning

* The domain of images (e.g., photo vs sketch) 1s assumed to be irrelevant for object
detection

Wheat images from Norway Wheat images from France Wheat images from Belgium

3
Image adapted from GlobalWheat dataset images from https://wilds.stanford.edu/datasets/. David L Inouve. Purdue University



https://wilds.stanford.edu/datasets/

What 1t some data 1s
assumed (or designed) to be zrrelevant?

* Unsupervised translation

* The source of images (i.e., real or generated) is designed to be irrelevant

Monet < Photos _ Zebras _ Horses - Summer  Winter

zeb —) horse

bl

horse — zebra

Photograph Monet Van Gogh Czanne ‘

Image from CycleGAN paper: Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the 4
IEEE international conference on computer vision (pp. 2223-2232). David I. Inouye, Purdue University



What 1t some data 1s
assumed (or designed) to be zrrelevant?

* Causal discovery

* Interventions are assumed to be irrelevant for most causal mechanisms

(e.g., turn on

(e.g, foree lights in room)

temper ature

to be high)

Observed distribution Intervened distribution Another intervened distribution
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How can known
irrelevant information be used?

* Simply discard irrelevant features

* However, other features may contain irrelevant information
(e.g., while gender is removed, it can be predicted from an applicant’s name)

* Irrelevant features may be unknown or entangled with relevant features

* Model design

* Hope model mmplicitly ignores irrelevant information (i.e., inductive bias)

* Design model to explicitly ignore easy-to-formalize irrelevant information
(e.g., graph models that are invariant to node permutations)
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Distribution alignment 1s
the opposite objective of classification

Original Space Optimization Objective Latent Space
Classification /*} /*\
= —
o maxg(P(g(0)d=y), P(g(0)]d=p)) L2 ZC“"‘SS
P(x|d=1) g {”
‘M where g: R?* > R and ¢ is a distribution %
divergence (e.g., KL, JSD, W>) X, R
X9 ;ﬁ; W"‘ »‘ £
3 Distribution alighment */\/*\
}W : g (x) = Zalign —
P(x|d=;) min ¢(P(g(x)ld=1), P(g(x)|d=)) I Jats "
o ‘oo
X1

Optimal solution ;x.va

P(g*(¥)|d=y) = P(g"()|des) EAR.
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Alignment can be with respect to the marginal,

conditional, or joint distribution
A AN i

N
Marginal alighment . {"% s /\/ZZ 5’? ""‘t}' /
P(z|d=1) = P(z;1]d=) i ? 37 7
% 7
Conditional alighment ¥ ..'g“:,;& ¥ - %,
P(z;|z1,d-1) = P(z]21,d=p) Ey h " i V'
% 2
F %
Joint alighment bt

*2 ’?3;,{ } égff 22 ‘.",%v ;::‘:g‘:
P(Z1'22|d=1) — P(21)Z2|d=2) Fonga Tie s 32
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Example: Marginal alignment without

conditional alignment

Joint p(z1, 25)

p(z2|z1)

Cond.

Marginal p(z;)
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Example: Marginal alignment without
conditional alignment
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Example: Conditional alignment without
marginal alignment
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Distribution alignment minimizes the
divergence between two distributions

Definition 1: Joint Distribution Alignment
Given samples from the joint distribution P (X, d), distribution alignment is the problem of finding an
aligner g: X X D — Z that minimizes a distribution divergence ¢: P X P — R, between the domain-

conditional distributions: Any distribution divergence that satisfies non-negativity Aligner can depend on
/‘ and ¢(P,Q) = 0 if and only if P = Q (e.g,, KL, JSD, W,). /

domain label 4
melg ¢(P(z|d=1),P(z|d=p)), where z = g(x,d).
g

Definition 2: Conditional Distribution Alignment

Given two variable index sets A, B € {1,2, ..., m}, conditional alignment minimizes an aggregation, defined
by an aggregator {lg_ [-], over all conditional divergences:

%1618 QZ\B[ d(P(z 4 |zg,d=1),P(z4 |25,d=5)) ], where z = g(x,d).

|

Usually this is merely the

expectation over Zg, i.e., Ep(z,) [-] 13
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Constraints on aligners
can be explicit or implicit

* Explicit constraints
X, ifd =1
g(x), otherwise
* Shared aligner between domains, i.e., g(x,d) = §(x)
* Invertible alignet, i.e., 3g~ts.t. Vx, g 1 (g(x,d),d) = x
o Approximately invertible via cycle consistency Af s.t. Vx, f(g(x,d),d) = x

o Translation aligner, i.e., g(x,d) = {

* Implicit (soft-)constraints via other optimization terms
* We will get to this in alighment applications



These definitions encompass all alignment types
under a unified framework

Marginal alignment

P(zy|d=1) = P(z1|d=5)

Conditional alighment
P(z3|z1,d=1) = P(z3|2,d=3)

Joint alignment
P(zy,2;|d=1) = P(2y,2,|d=7)

A S e |
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v, vy ;x,v‘:
: G -
" e " Zy =171,Z25 =0
X1 Z1
Shift only on y-axis
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K Za =Z22,Zp = 21
X1 Zq
g *%‘:,% Translation
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Tractable alignment measures are needed for
evaluation and alignment algorithms

* Two primary uses for alignment measures:
1. Evaluating or comparing alignment methods

2. Designing objectives for alignment algorithms
(1.e., directly minimize alignment measure)

* While theoretic divergences are elegant (e.g., KL, JSD, TV), most of
them are intractable to estimate given only samples

* Thus, this talk focuses on #ractable alignment measures



Extrinsic alignment measures have been used
for evaluation (but usually not training)

* External task metric
* (Classification accuracy under fair (alignment) constraints

* Generalization performance on unseen domain (for domain generalization methods that
use feature alignment)

* Frechet Inception Distance (FID) or Inception Score (IS)

* Evaluates quality of images from deep generative models based on latent space of
Inception v3 network

* Perceptual measure of image quality and diversity



Intrinsic measures are used for training
but not for evaluation

* Adversarial measures are variational lower bounds of divergences
bcan(9) = max Ep(x|d=1)[108f(9(xr )]+ Ep(x|d_,) [108 (1 ~ f(g(=x, 2)))]

* If solved perfectly, then ¢pgan(g) = JSD (P(g(x, 1ld-1), P(g(x, 2)|d=2)) + const

* If non-optimal, then it 1s lower bound.

e Other intrinsic measure based on Wasserstein distance

* Empirical optimal transport algorithms
e Sliced Wasserstein distance



Alignment Upper Bound (AUB) generalizes
alionment measures based on znvertible models
* A variational upper bound of JSD:

baus(9) = min ¥g_; Bp(xq)|—logl/g,|Q(g(x, D))

* () is a density model shared among domains
* g is invertible and | /g dl is the determinant Jacobian of g(-, d)

AUB

* Bound gap is exactly KL(X 4 waP(z]d), Q(2))
* Any @ provides an upper bound on JSD + const
* Alignment is cooperative: min ¢4;5(g) = min min ...

KL(P(2),Q") — XqwqH(P(x|d))
' >0 constant
gap

(where P(z) =Y ,wy P(z|d))
GJSD

* The optimal solution aligns the distributions regardless of Q

Cho, W., Gong, Z., & Inouye, D. |. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286
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AUB

AUB(1): JSD as entropy of mixture

minus mixture of entropies

KL(P(2),Q") — YqwaH(P(x|d))
' >0 constant
gap

(where P(z) =Y 4wy P(z|d))
GJSD

* JSD(P(zld=1), P(z|d->))
+ = Y45 KL(P(z|d),P(2)) (LetP(2) = %q5P(zld),ie.,amixture)

. 1 P(z|d)
= 2a3Ep(z)d) 1°g @)

* = 245 Ep(z1a) [~ 108 P(D)] = Sa; Ep(z)q)[~log P(z|d)]
+ = Y45 J, Pzld) (= log P(2))dz — 345 H(P(z|d))

+ = [543 P(zld) (~logP(2))dz — 34 H(P(z]d))

+ = [,P(2) (—logP(2))dz — S4 5 H(P(zId))

+ = H(P(2) — Zaz H(P(z1d))



AUB(2): Latent entropy 1s observed entropy

. KL(P(2),Q") — ZawaH(P(x|d))
_I_ log detefmlﬁaﬂt t€fm ' =0 constant

gap

(where P(z) =Y 4wy P(z|d))
GJSD

- H(P(z|d))
* = [Ep(, d)[_ log P(z|d)]
* = Epyjay[—log P(z = g(x,d)|d)]

= Epxjay |[-log PGl )|, (0|
* = Epxjay[—log P(x|d)] + Ep(xja) _—3-°g‘fgd(x)‘_1]
¢ = H(P(x|d)) + Epejay [logllg, (0] ]




AUB(3): Latent cross entropy is weighted

KL(P(2),Q") = XqwqH(P(x|d))
observed cross entropy @ 20 i

gap

(where P(z) =Y 4wy P(z|d))
GJSD

* H.(P(2),Q(2)) = Ep(y)|—log(Q(2))]
(Note that: KL(P,Q) = H.(P,Q) — H(P))

o = — [, Xu5P(zld) 10g(Q(2)) dz

e = =34 [, P(zld)log(Q(2)) dz

* = Zd%IEP(ZM)[_ log(Q(2))]

. = Zd%[EP(xld) [_ log (Q(g(x’ d)))]




AUB4): AUB 1s upper bound on
JSD + const

* ]SD(P(Z|d:1)»P(Z|d:2))

AUB

KL(P(2),Q") — YqwaH(P(x|d))
' >0 constant
gap

(where P(z) =Y 4wy P(z|d))
GJSD

+ = H(P(2)) — S45 H(P(z]d))

+ = H(P(2),Q(2)) — H(P(2),Q(@) + H(P(2)) — £43 H(P(zld))
+ = H(P(2),Q(2)) — KL(P(2),Q()) — Sq3 H(P(z|d))

* < H(P(),Q(2) — 245 H(P(zID)

1
* = ng [EP(x|d)
1
* = ng [EP(x|d)

—log (Q(9(x, D))| - Za3 (Erxiw [logll g, (0)|] + H(P(x|d)))

—1og |/, @[Q(9 . ) )] - Za2 H(P(xla)

Constant w.r.t g



Alignment Algorithms



Adversarial optimization (GAN-1inspired) 1s the
standard approach to alignment

* Intuition — Competitive game
* Counterfeiter 1s trying to avoid getting caught

T , Adversarial alignment problem
* DPolice 1s trying to catch counterfeiter

r%in max Ep(x|d=1)[logf(g(x, D)+ Ep(x|d_,) [log (1 — f(g(x, 2)))]

* Algorithm — Usually alternating optimization

between min and max g(x,1) = x
* Benefits Traini;lg set V / N Discriminator
| L P(x|d-,) v f(2)
* No constraints on generator and discriminator L,
models Random 27| | / _> I — {Fake
* Drawbacks % 9(x,2) = g(x)

* J.acks domain-agnostic evaluation metrics P(x|d=2) Generator | Fake image
(e.g., unable to C CCk fOI' OVGIﬁttlﬂg) https://www.freecodecamp.org/news/an-intuitive-introduction-to-

° Unstable or pOOfly COﬂditiOﬁed OptimizatiOﬂ generative-adversarial-networks-gans-7a2264a81394



https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

AUB optimization provides a cooperative
alternative to adversarial alignment

AUB cooperative alignment problem

mgin glelg Z;C=1 Ep(x|d) [log|/,,|Q(g(x, d))]

ol

!. °\.\ g(ﬁ) @2) . /. \.\.
/o |
J \_

J A

Pixli=l)  P(g(xD)|d=1) P(e(x2)|d=2)  Px|d=2)

* Minimizing g makes distributions closer to current ) (left)

* Minimizing () tightens bound by getting closer to the latent mixture, 1.e.,

2.q P(g(x,d)|d) (right)

Cho, W., Gong, Z., & Inouye, D. |. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 27
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286

David 1. Inouye, Purdue University
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AUB can perform alignment on tabular data

and between multip!

OO | 23450729 Ol 23IYSLETEYT

/ O ) A3YS b7 iy 012345k727

MINIBOONE | GAS | HEPMASS | POWER <0 /| 234§6697¢89 0/a34§5(71 %19

(42) (7) (20) (5) SO \ 23456189 Ol 234567189

LRMF 12.79 6.17 18.49 0.93 YElCe | A4S L7 Y9 ol234Y5b7 9%
AF (MLE) 14.08 6.52 19.37 0.77 S 0C1234Y5L7%9 OV\274S5S7&9
AF (Adv. only) 18.18 -3.15 21.70 -0.39 @ 0/ 239vyE£ a6y 879 0/ R34S5aeaP5% 7
AF (hybrid) 19.49 376 | 21.42 0.43 T7Bl0O 234567 %89 0123456786
Ours 12.11 -7.09 18.26 -1.19 < O(83495¢cT7%9 QI R345€1<%9

1 PAEREEXNER] CEIRELRNERY

These results on 4 benchmark tabular datasets

e domains

AlignFlow (MLE)

Ours

Our AUB algorithm can translate between 10
domains (MNIST digits here) better than the closest
competitor (AlignFlow) for invertible models.
(Original real digits are far left and grid 1s

demonstrate that our algorithm can improve the
AUB alighment measure on test data.

translations to all other digits.)

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286
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Iterative alignment tlows iteratively solve 1D
alionment problems to create deep aligner

1. Find 1D projection that is maximally misaligned (i.e., max sliced
Wasserstein distance)

max W,(P(6Tx|d=1), P(8Tx|d_5))

2. Align along this 1D projection by maﬁ)ging to barycenter distribution
min Epizaylllg(X,d) — %||*]
s.t. x=0"x, P(g(¥ 1)|d=1) =P(g9(%,2)|d-,)
3. Update aligner (add one layer) and repeat
gx) =g@Tx,d)o + xp

~new ~ ~old

Yslobal = Y ° Yglobal

XV = §(x)

Zhou, Z., Gong, Z., Ravikumar, P., & Inouye, D. I. (2022, May). Iterative Alignment Flows. In International Conference on
Artificial Intelligence and Statistics (AISTATS). https://proceedings.mir.press/v151/zhou22b/zhou22b.pdf
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INB 1s significantly taster than the closest
invertible model baselines

Model

WD

FID

TC

Time(s)

NB
Ours INB (L = 20)

Iterative
Baselines

Deep
Baselines

Zhou, Z., Gong, Z., Ravikumar, P., & Inouye, D. I. (2022, May). Iterative Alignment Flows. In International Conference on

INB (L = 250)
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Artificial Intelligence and Statistics (AISTATS). https://proceedings.mir.press/v151/zhou22b/zhou22b.pdf  David 1. Tnouye, Purdue University
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Alignment Applications



Alignment
applications
can be unified
as a task
objective +
(sof)
alignment
constraints

Task objective

e “What we want”
e Relevant information

g /\lignment constraints

e “What we don’t want”
e [rrelevant information

32
David I. Inouye, Purdue University




Fair classification aims to classity correctly
while controlling for sensitive attributes

Task objective: (Soft) alignment constraints:
“What we want” / “relevant” “What we don’t want” / “irrelevant”

* Accurately predict whether a loan ¢ The prediction must be ndependent

application should be approved of sensitive attribute d
* Standard classification loss * Alignment constraint loss
]EP(X d) [‘B(f(g (x, d)), y)] ¢(P(g(x, d)ld:1)' P(g(x» d) |d:2))

Raw representation 1s /—\ ) W | Aligned representation
good for task but | y is good for task but
\_/

sensitive attribute can 2 31y = ) 30 Py = hia) =1 sensitive attribute
be determined z~ 20 = [1(2) z~pz, cannot be determined
egg Jg: Pla=g(z)) = 1 «g; Vg:Pla=g(2)) < 5= =3

[lustration from: Balunovic, M., Ruoss, A., & Vechev, M. (2021, September). Fair normalizing flows. In International Conference on Learning
Representations.



Unsupervised image-to-image translation aims
to preserve content while changing domains

Task objective: (Soft) alignment constraints:
“What we want” / “relevant” “What we don’t want” / “irrelevant”

* Preserve semantic image content  * Change the style (or domain) of

* Both explicit and implicit the image

methods (e.g., CYCICG AN) * Translated image should “look like”

* Cycle consistency loss (explicit) images from the other domain

* Identity regularization (explicit) * Alignment constraint loss
« CNN architecture (implicit) ¢(P(g(x, d)ld=1), P(x|d=2))

Monet Z_ Photos

Summer _ Winter

Zebras _ Horses
i v =

S0 R LaA B BT | R
Monet —» photo : zebra —> horse

summer — winter

Image from CycleGAN paper: Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the 3%
IEEE international conference on computer vision (pp. 2223-2232). David 1. Inouye, Purdue University



Background: Causal probabilistic models
implicitly encode the effect of interventions

The stove distribution is

IW the same, i.c., aligned! \ Intervened distribution
P(stove)P(boiling|stove)

P(stove)d(boiling = True)

Force the

S to‘;e Water . watet to
On: Boiling: boil
Both are valid factorizations. One idea: The factorization that
But which factorization is causal? changes the least under an intervention.
Force the
water to
: .. L boil
Implied factorization Intervened distribution
P(boiling)P(stove|boiling) §(boiling = True)P(stove|boiling)
\ The stove distribution 1s different under __— .

intervention. P(stove|boiling) = P(stove) David I. Inouye, Purdue University



Background: Causal probabilistic models
implicitly encode the effect of interventions

The boiling distribution is
Implied factorization / the same, i.e., aligned! Mutlon

P(stove)P(boiling|stove) d(stove = True)P(boiling|stove)
Stove Water ic;rc: on
On? Boiling? v
Both are valid factorizations. One 1dea: The factorization that
But which factorization is causal? changes the least under an intervention.

Force

stove on

Implied factorization Intervened distribution
P(boiling)P(stove|boiling) P(boiling)§ (stove = True)
h __ The boiling distributionis ~~_~* y

different under intervention. David I. Inouye, Purdue University




Different domains can be viewed as unknown
interventions in a Jatent causal space

Other marginals and

conditionals are aligned

Latent space z|d—y, ~ CausalModel

37
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Image adapted from GlobalWheat dataset images from https://wilds.stanford.edu/datasets/.
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Sparse intervention assumption => misalignment sparsity

(Only a few conditionals are misaligned)
In 2D this means that either the marginal or conditionals are misaligned but not both.

Nothing is aligned Marginal p(z;) is Nothing is aligned Conditional p(z,|z;)
(non-sparse) aligned (sparse) (non-sparse) is aligned (sparse)
A A== Disto | 5 W= Dist 0
0.2 - y Dist 1 mem Dist 1 11
| 0.1
0- 0-
101 10 1 2 1 21
N o ,
0 n 0- 0 o 0 | 01
> ® 7
~10 A . , , , g : : I =21 ; l
2.5 ]
10 | 10 A 2 »
0 ’,H 0 ’ 0.0 - 01 » >
_10 | T T _10 7 T T 2.5 L T T T T _2 | T T T T
~-10 0 10 -10 0 10 -25 00 25 50 -25 00 25 50
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Future Vision: Alignment as (soft) constraints to
combat underspecification in deep learning

Underspecification Presents Challenges for Credibility in
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Figure 4: Image classification model performance on stress tests is sensitive to random
initialization in ways that are not apparent in iid evaluation. (Top Left)
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Future research opportunities in all areas ot
distribution alignment

* Alighment concepts
* Conditional alignment in particular

* Alignment measures
* More application-agnostic measures
* Rigorous evaluation protocols

* Alignment algorithms
* Beyond adversarial
* More stable optimization

* Alignment applications
e What robustness can we achieve?
* Can we make this more general?



