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Why study generative models?

▸Sketching realistic photos

▸Style transfer

▸Super resolution
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Much of material from: Goodfellow, 2012 tutorial on GANs.



Why study generative models?

▸Emulate complex physics 
simulations to be faster

▸Reinforcement learning -
Attempt to model the real 
world so we can simulate 
possible futures
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Much of material from: Goodfellow, 2012 tutorial on GANs.



Outline of 
Generative 
Adversarial 

Networks 
(GANs)
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Introduction
• Motivation for generative models
• Overview of training generative models

GAN model
• No explicit density
• Only samples available

GAN objective
• Intuition as adversarial game
• Mathematics via min-max optimization
• Derivation of theoretical solution as JSD

Practical challenges of GANs
• Gap between theory and practice
• Vanishing gradient issue of JSD
• Failure to converge (min-max optimization)
• Mode collapse
• Evaluation (IS, FID)



How do we learn these generative models?

▸Primary classical approach is MLE
▸Density function is explicit parameterized by 𝜃
▸Examples: Gaussian, Mixture of Gaussians

▸Problem: Classic methods struggle to model very 
high dimensional spaces like images
▸Remember a 256x256x3 image is roughly 200k 

dimensions
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Maybe not a problem: GMMs compared to GANs 
http://papers.nips.cc/paper/7826-on-gans-and-
gmms.pdf

▸Which one is based on GANs?
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http://papers.nips.cc/paper/7826-on-gans-and-gmms.pdf


VAEs are one way to create a generative model 
for images though images are blurry
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https://github.com/WojciechMormul/vae



Maybe not a drawback…
VQ-VAE-2 at NeurIPS 2019
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Razavi, A., van den Oord, A., & Vinyals, O. 
(2019). Generating diverse high-fidelity 
images with vq-vae-2. In Advances in 
Neural Information Processing 
Systems (pp. 14866-14876).

Generated high-quality images
(probably don’t ask how long it 
takes to train this though…)



Newer (not necessarily better) approach: Train 
generative model without explicit density

▸GMMs and VAEs had explicit density 
function

(i.e., mathematical formula for 
density 𝑝 𝑥; 𝜃 )

▸In GANs, we just try learn a sample 
generator
▸Implicit density (𝑝 𝑥 exists but cannot 

be written down)

▸Sample generation is simple
▸𝑧 ∼ 𝑝!, e.g., 𝑧 ∼ 𝒩(0, 𝐼) ∈ ℝ"##
▸𝐺$ 𝑧 = /𝑥 ∼ �̂�% 𝑥
▸Where 𝐺 is a deep neural network
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Unlike VAEs, GANs do not (usually) have 
inference networks
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𝐹 𝐺

𝑧!𝑥! 1𝑥& ∼ 𝑝 𝑥& 𝐺 𝑧&

𝐿 𝑥! , '𝑥!
VAE

𝐺

𝑧! 1𝑥& = 𝐺 𝑧&
𝐿 𝑥! , '𝑥! ?GAN

No pair of original and 
reconstructed
How to train?



Key training challenge: Comparing two 
distributions known only through samples

▸In GANs, we cannot produce pairs of original and 
reconstructed samples as in VAEs

▸But have samples from original data and generated 
distributions

𝐷!"#" = 𝑥$ $%&' , 𝑥$ ∼ 𝑝!"#" 𝑥
𝐷( = 𝑥$ $%&) , 𝑥$ ∼ 𝑝( 𝑥|𝐺

▸How do we compare two distributions only through 
samples?
▸Fundamental, bigger than generative models

David I. Inouye 10



GAN objective:
Could we use KL divergence as in MLE training?

▸We can approximate the KL term up to A constant

𝐾𝐿 𝑝*+,+ 𝑥 , 𝑝- 𝑥 = 𝔼.'()( log .'()( /
.* /

= 𝔼.'()( − log 𝑝- 𝑥 + 𝔼.'()( log 𝑝*+,+ 𝑥
≈ 1𝔼.'()( − log 𝑝- 𝑥 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
= ∑$− log 𝑝- 𝑥$ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
= ∑$− log 𝑝- 𝑥$ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Because GANs do not have an explicit density, we 
cannot compute this KL divergence.

David I. Inouye 11



GAN objective mathematics: 
Competitive game between two players

▸Abstract formulation as minimax game
min
+
max
,

𝔼-∼/!"#" log𝐷 𝑥 + 𝔼!∼/$ log 1 − 𝐷 𝐺 𝑧

▸𝐷 is a probabilistic binary classifier, i.e., output is 
probability between 0 and 1
▸𝐺 must output an object that is the same shape as 

the input 𝑥
▸Minimax/adversarial : “Minimize the worst case
(max) loss”
▸What does this adversarial objective mean?
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GAN objective: GANs introduce the idea of adversarial 
training for estimating the distance between two 
distributions

▸GANs approximate the Jensen-Shannon 
Divergence (JSD) closely related to KL divergence

▸GANs optimize both the JSD approximation and 
the generative model simultaneously
▸A different type of two network setup

▸Broadly applicable for comparing distributions 
only through samples
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GAN objective intuition: Competitive game 
between two players

▸Intuition: Competitive game between two 
players
▸Counterfeiter is trying to avoid getting caught
▸Police is trying to catch counterfeiter

min
!
max
"

𝔼#∼%!"#" log𝐷 𝑥 + 𝔼&∼%$ log 1 − 𝐷 𝐺 𝑧

▸Analogy with GANs
▸Counterfeiter = Generator denoted 𝐺
▸Police = Discriminator denoted 𝐷
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GAN objective in practice:
Train two deep networks simultaneously
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https://www.freecodecamp.org/news/an-intuitive-introduction-to-
generative-adversarial-networks-gans-7a2264a81394/

min
%
max
&

𝔼'∼)!"#" log𝐷 𝑥 + 𝔼*∼)$ log 1 − 𝐷 𝐺 𝑧

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/


GAN objective mathematics: 
Competitive game between two players

▸Minimax: “Minimize the worst case (max) loss”
▸Counterfeiter goal: “Minimize chance of getting caught 

assuming the best possible police.”

▸Abstract formulation as minimax game
min
!
max
"

𝔼#∼%!"#" log𝐷 𝑥 + 𝔼&∼%$ log 1 − 𝐷 𝐺 𝑧

▸The value function is
V D, G = 𝔼#∼%!"#" log𝐷 𝑥 + 𝔼&∼%$ log 1 − 𝐷 𝐺 𝑧

▸Key feature: Almost no restrictions on the networks 𝐷
and 𝐺
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The discriminator seeks
to be optimal classifier

▸Let’s look at the inner maximization problem
𝐷∗ = arg max

,
𝔼-∼/!"#" log𝐷 𝑥 + 𝔼!∼/$ log 1 − 𝐷 𝐺 𝑧

▸Given a fixed 𝑮, the optimal discriminator is the 
optimal Bayesian classifier

𝐷∗ #𝑥 = 𝑝∗ #𝑦 = 1 #𝑥 =
𝑝"#$# #𝑥

𝑝"#$# #𝑥 + �̂�% #𝑥
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Derivation for the optimal discriminator

▸Given a fixed 𝑮, the optimal discriminator is the optimal classifier 
between images

▸𝐶 𝐺 =max
%

𝔼&∼(!"#" log𝐷 𝑥 + 𝔼)∼($ log 1 − 𝐷 𝐺 𝑧

▸= max
"

𝔼#∼%!"#" log𝐷 𝑥 + 𝔼#∼ '%$ log 1 − 𝐷 𝑥

▸= max
"

∫ 𝑝()*) 𝑥 log 𝐷 𝑥 𝑑𝑥 + ∫ �̂�1 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

▸= max
"

∫ 𝑝()*) 𝑥 log 𝐷 𝑥 + �̂�1 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

▸= max
"

∫ 𝑎# log 𝑦# + 𝑏2 log 1 − 𝑦2 𝑑𝑥

▸Max of 𝑎 log 𝑦 + 𝑏 log 1 − 𝑦 is 𝑦∗ = ,
,-.

. 
▸(Hint: Take derivative and set to 0)

▸Therefore, 𝐷∗ 𝑥 = %!"#" #
%!"#" # - '%$ #
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Opposite of 
reparametrization trick! J



The generator seeks to produce
data that is like real data

▸Given that the inner maximization is perfect, the inner minimization is equivalent to 
Jensen Shannon Divergence for the given 𝑮:

𝐶 𝐺 = max
!

𝑉 𝐷, 𝐺
= 2 𝐽𝑆𝐷 𝑝"#$# , �̂�% + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

▸Jensen Shannon Divergence is a symmetric version of KL divergence

𝐽𝑆𝐷 𝑝 𝑥 , 𝑞 𝑥

=
1
2
𝐾𝐿 𝑝 𝑥 ,

1
2
𝑝 𝑥 + 𝑞 𝑥 +

1
2
𝐾𝐿 𝑞 𝑥 ,

1
2
𝑝 𝑥 + 𝑞 𝑥

=
1
2
𝐾𝐿 𝑝 𝑥 ,𝑚(𝑥) +

1
2
𝐾𝐿 𝑞 𝑥 ,𝑚(𝑥)

▸JSD also has the property of KL:

𝐽𝑆𝐷 𝑝"#$# , �̂�% ≥ 0 and = 0 if and only if 𝑝"#$# = �̂�%
▸Thus, the optimal generator 𝐺∗ will generate samples that perfectly mimic the true 

distribution:
arg min

'
𝐶 𝐺 = arg min

'
𝐽𝑆𝐷 𝑝"#$# , �̂�%
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Derivation of inner maximization being 
equivalent to JSD

▸𝐶 𝐺 = max
"

𝔼#∼%!"#" log𝐷 𝑥 + 𝔼&∼%% log 1 − 𝐷 𝐺 𝑧

▸= max
"

𝔼#∼%!"#" log𝐷 𝑥 + 𝔼#∼ '%$ log 1 − 𝐷 𝑥

▸= 𝔼#∼%!"#" log𝐷
∗ 𝑥 + 𝔼#∼ '%$ log 1 − 𝐷

∗ 𝑥

▸= 𝔼 /#∼%!"#" log %!"#" /#
%!"#" /# - '%$ /#

+ 𝔼 /#∼ '%$ log 1 − %!"#" /#
%!"#" /# - '%$ /#

▸= 𝔼 /#∼%!"#" log %!"#" /#
%!"#" /# - '%$ /#

+ 𝔼 /#∼ '%$ log
'%$ /#

%!"#" /# - '%$ /#

▸= 𝔼 /#∼%!"#" log
&
'%!"#" /#

&
' %!"#" /# - '%$ /#

+ 𝔼 /#∼ '%$ log
&
' '%$ /#

&
' %!"#" /# - '%$ /#

▸= 𝔼 /#∼%!"#" log %!"#" /#
&
' %!"#" /# - '%$ /#

+ 𝔼 /#∼ '%$ log
'%$ /#

&
' %!"#" /# - '%$ /#

− log 4

▸= 2 𝐽𝑆𝐷 𝑝()*) , �̂�0 − log 4
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https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf



Recap of GAN objective: Inner maximization is 
equivalent to JSD but only at the current 𝐺

▸Overall GAN adversarial (min-max) problem:
min
+
max
,

𝔼-∼/!"#" log𝐷 𝑥 + 𝔼!∼/$ log 1 − 𝐷 𝐺 𝑧

▸Optimal solution to inner maximization problem

𝐷∗ 𝑥 =
𝑝RSTS 𝑥

𝑝RSTS 𝑥 + �̂�% 𝑥
▸Using this solution, the inner problem is equivalent to JSD:
𝐶 𝐺 ∶= max

,
𝑉 𝐷, 𝐺 = 𝑉 𝐷∗, 𝐺 = 2 𝐽𝑆𝐷 𝑝RSTS , �̂�% − log 4

▸In theory, we can then update our 𝐺 via 
∇UC G = ∇+𝐽𝑆𝐷 𝑝RSTS, �̂�% = ∇+𝑉 𝐷∗, 𝐺

▸However, after updating 𝐺, the max must be solved again (at 
least for this theory to hold). 
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Practical 
challenges 
in training 
GANs
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Gap between theory and 
practice

Vanishing gradient issue of JSD

Failure to converge (min-max 
optimization)

Mode collapse

Evaluation (IS, FID)



What if inner maximization is not perfect?

▸Suppose the true maximum is not attained
6𝐶 𝐺
= 7max

%
𝔼&∼(!"#" log𝐷 𝑥 + 𝔼)∼($ log 1 − 𝐷 𝐺 𝑧

▸Then, !𝐶 𝐺 becomes a lower bound on JSD
!𝐶 𝐺 < 𝐶 𝐺 = 𝐽𝑆𝐷 𝑝VWXW 𝑥 , 𝑝% -

▸However, the outer optimization is a 
minimization

min
+
max
,

𝑉 𝐷, 𝐺 ≈ min
+

!𝐶 𝐺
▸Ideally, we would want an upper bound like 

in VAEs
▸This can lead to significant training 

instability
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Great! But wait… This theoretical analysis 
depends on critical assumptions

1. Assumptions on possible 𝐷 and 𝐺
1. Theory – All possible 𝐷 and 𝐺
2. Reality – Only functions defined by a neural network

2. Assumptions on optimality
1. Theory – Both optimizations are solved perfectly
2. Reality – The inner maximization is only solved 

approximately, and this interacts with outer minimization
3. Assumption on expectations

1. Theory – Expectations over true distribution
2. Reality – Empirical expectations over finite sample; for 

images, much of the high-dimensional space does not have 
samples

▸GANs can be very difficult/finicky to train
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Common problems with GANs: Vanishing gradients for 
generator caused by a discriminator that is “too good”

▸Vanishing gradient means ∇8𝑉 𝐷, 𝐺 ≈ 0.
▸Gradient updates do not improve 𝐺

▸Theoretically, this is an issue of JSD

▸Practically, careful balance during training required:
▸Optimizing 𝐷 too much leads to vanishing gradient
▸But training too little means it is not close to JSD
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From: https://developers.google.com/machine-learning/gan/problems

Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. 
In International conference on machine learning (pp. 214-223). PMLR.



Common problems with GANs: Vanishing gradients for 
generator caused by a discriminator that is “too good”

▸Vanishing gradient means ∇B𝑉 𝐷, 𝐺 ≈ 0.
▸Gradient updates do not improve 𝐺

▸Modified minimax loss for generator (original GAN)

min
B
𝔼C? log 1 − 𝐷 𝐺 𝑧 ≈ min

B
𝔼C@ − log𝐷 𝐺 𝑧

▸Wasserstein GANs

𝑉 𝐷, 𝐺 = 𝔼CABCB 𝐷 𝑥 − 𝔼C@ 𝐷 𝐺 𝑧

where 𝐷 is 1-Lipschitz (special smoothness property).
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From: https://developers.google.com/machine-learning/gan/problems

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of 
wasserstein gans. In Advances in neural information processing systems (pp. 5767-5777).



Common problems with GANs: Failure to converge
because of minimax and other instabilities

▸Loss function may oscillate or 
never converge

▸Disjoint support of distributions
▸Optimal JSD is constant value (i.e., no 

gradient information)
▸Add noise to discriminator inputs 

(similar to VAEs)

▸Regularization of parameter 
weights
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From: https://developers.google.com/machine-learning/gan/problems

Arjovsky, M., & Bottou, L. (2017). Towards principled 
methods for training generative adversarial 
networks. arXiv preprint arXiv:1701.04862.

https://machinelearningmastery.com/practical-
guide-to-gan-failure-modes/

Mescheder, L., Geiger, A., & 
Nowozin, S. (2018, July). Which 
training methods for GANs do 
actually converge?. In International 
conference on machine 
learning (pp. 3481-3490). PMLR.



Common problems with GANs: Mode collapse
hinders diversity of samples

▸Wasserstein GANs

▸Unrolled GANs
▸Trained on multiple 

discriminators simultaneously
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From: https://developers.google.com/machine-learning/gan/problems

http://papers.nips.cc/paper/6923-veegan-reducing-mode-
collapse-in-gans-using-implicit-variational-learning.pdf

https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative 
adversarial networks. arXiv preprint arXiv:1611.02163.

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans


Evaluation of GANs is quite challenging

▸In explicit density models, we could use test log 
likelihood to evaluate

▸Without a density model, how do we evaluate?

▸Visually inspect image samples
▸Qualitative and biased
▸Hard to compare between methods
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Common GAN metrics compare latent 
representations of InceptionV3 network
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Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. 
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2818-2826).

https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

Extract features 
from last layers 
and compare



Inception score (IS) considers both clarity of 
images and diversity of images

▸Extract Inception-V3 distribution of predicted labels, 
𝑝DEFGHIDJEKL 𝑦 𝑥D , ∀𝑥D
▸Images should have “meaningful objects”, i.e., 𝑝 𝑦 𝑥D

has low entropy
▸The average over all generated images should be 

diverse, i.e., 𝑝 𝑦 = M
E
∑D 𝑝 𝑦 𝑥D should have high 

entropy
▸Combining these two (higher is better):

𝐼𝑆 = exp 𝔼H( 𝐾𝐿 𝑝 𝑦 𝑥 , 𝑝 𝑦
▸Consider if 𝑝 𝑦 𝑥 = 𝑝 𝑦 , i.e., all images give the same 

distribution over images
▸Either, all images are indistinct (e.g., they don’t look like 

images so predictions are random)
▸Or, all images are the same (e.g., all images are dog)
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Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances 
in Neural Information Processing Systems (pp. 2234–2242).



Frechet inception distance (FID) compares latent 
features from generated and real images

▸Problem: Inception score ignores real images
▸Generated images may look nothing like real images

▸Extract latent representation at last pooling layer of Inception-
V3 network (𝑑 = 2048)

▸Compute empirical mean and covariance for real and 
generated from latent representation

𝜇VWXW , ΣVWXW and 𝜇%, Σ%
▸FID score:

𝐹𝐼𝐷 = 𝜇NOIO − 𝜇1 P
P + Tr ΣNOIO + Σ1 − 2 ΣQRSRΣ1

TMP

▸Considers both mean and covariance of latent distribution
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Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge 
to a local nash equilibrium. In Advances in neural information processing systems (pp. 6626-6637).



FID correlates with common distortions
and corruptions
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Figure from Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update 
rule converge to a local nash equilibrium. In Advances in neural information processing systems (pp. 6626-6637).

Randomly add ImageNet 
images unlike celebrity dataset



GAN Summary: Impressive innovation with 
strong empirical results but hard to train

▸Good empirical results on generating sharp 
images

▸Training is challenging in practice

▸Evaluation is challenging and unsolved

▸Much open research on this topic
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Excellent online visualization and demo of GANs

▸https://poloclub.github.io/ganlab/
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https://poloclub.github.io/ganlab/

