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Gaussian mixture models (GMM) can be used for 
density estimation

1. General density estimation
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https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


Even if each component distribution is independent, 
the mixture may not be independent

▸Each component distribution is spherical (i.e., independent)
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Gaussian mixture models (GMM) can be used for 
flexible clustering

2. Flexible clustering
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Overview of Gaussian Mixture Models

▸Introduction

▸Mixture model definitions
▸Simple average density
▸Equivalent latent variable formulation

▸EM Algorithm for GMMs
▸Expectation step
▸Maximization step

▸Derivation of EM algorithm’s monotonic increase of 
log likelihood
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Mixture distributions are weighted averages of 
component distributions

▸Mixture distribution
▸Component weights 0 ≤ 𝜋! , ≤ 1 s. t. ∑!"#$ 𝜋! = 1
▸Component distributions 𝑝! 𝑥

▸Simple form of mixture

𝑝!"#$%&' 𝑥 =$
()*

+

𝜋(𝑝( 𝑥

▸Exercise: Check that 𝑝!"#$%&' integrates to 1.
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Mixture models can be viewed as
latent (or “hidden”) variable models

▸Simple form of mixture
𝑝!"#$%&' 𝑥 =$

()*

+

𝜋(𝑝( 𝑥

▸Let 𝑧 ∈ {1, … , 𝑘} be an auxiliary indicator variable

▸Let 𝑝 𝑧 = 𝑗 = 𝜋(, then the joint density model is:
𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑝 𝑥 𝑧

▸The distribution of 𝑥 marginalizes over the latent variable 𝑧
which is equivalent to the mixture above

𝑝!"#$%&' 𝑥 ≡$
,

𝑝 𝑥, 𝑧 =$
,

𝑝 𝑧 𝑝 𝑥 𝑧
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Gaussian mixture models (GMM) are one of the 
most common mixture distributions

▸Form of Gaussian mixture model

𝑝-.. 𝑥 =$
()*

+

𝜋(𝑝𝒩 𝑥; 𝜇(, Σ( =$
()*

+

𝑝 𝑧 = 𝑗 𝑝𝒩 𝑥; 𝑧 = 𝑗
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Machine 
Learning, 
Murphy, 
2012.



MLE for mixtures is difficult 
Reason 1: The algebraic form is more complex

▸The mixture log likelihood cannot be simplified

arg max
%,'!,(!

log(
)

𝑝*++(𝑥); 𝜋, 𝜇#, … , 𝜇$, Σ#, … , Σ$)

3
)

log 𝑝*++(𝑥); 𝜋, 𝜇#, … , 𝜇$, Σ#, … , Σ$)

3
)

log3
,"

𝜋,"𝑝𝒩 𝑥) | 𝜇," , Σ,"

3
)

log3
,"

𝑝 𝑧) 𝑝𝒩 𝑥)|𝑧)

▸Cannot exchange 𝐥𝐨𝐠 and summation to cancel 𝐞𝐱𝐩
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MLE for mixtures is difficult 
Reason 2: Problem is non-convex 
(and could have multiple local optima)

▸The intuition is similar to the problem with k-
means clustering
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See [ML, Ch. 11, pp. 347-348] for more detailed analysis.



The Expectation-Maximization (EM) can estimate 
models and is a generalization of 𝑘-means

▸The EM algorithm for GMM alternates between
▸Probabilistic/soft assignment of points
▸Estimation of Gaussian for each component

▸Similar to k-means which alternates between
▸Hard assignment of points
▸Estimation of mean of points in each cluster
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EM Algorithm: Initialization
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM Algorithm: Iteration 1 and 3
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM Algorithm: Iteration 5 and 16
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Machine Learning: A probabilistic perspective, Murphy, 2012.



EM algorithm for Gaussian mixture models
Expectation step

▸Randomly initialize mixture components
▸Expectation step (determine soft assignments)
▸𝑟,(- = 𝑝 𝑧, = 𝑗 𝑥, , 𝜃-.*

▸= / 0!,2!|4"#$

/ 2!|4"#$

▸= / 0!|4"#$ / 2! | 0!,4"#$

∑%! / 0!|4"#$ / 2! | 0!,4"#$

▸=
6&/𝒩 𝑥, 𝜇(-.*, Σ(-.*

∑( 6(/𝒩 𝑥, 𝜇+-.*, Σ+-.*
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EM algorithm for Gaussian mixture models
Maximization step

▸Compute weighted mean and covariance using 
soft assignments from E step

𝜇(- =
∑, 𝑟,( 𝑥,
∑, 𝑟,(

Σ(- =
∑, 𝑟,( 𝑥, − 𝜇(- 𝑥, − 𝜇(-

7

∑, 𝑟,(
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Derivation of EM algorithm

▸Observed/marginal log likelihood 
(if 𝑧) is unknown)

ℓ 𝜃 =0
)

log0
,!

𝑝 𝑥) , 𝑧); 𝜃

▸If 𝑧) were observed (i.e., we knew the cluster labels), 
then optimizing the complete log likelihood is easy
▸Complete log likelihood (if 𝑧) is known)

ℓ0 𝜃 =$
1

log 𝑝 𝑥1, 𝑧1; 𝜃 =$
1

log 𝑝 𝑧1 𝑝𝒩 𝑥1 𝑧1)

▸For GMMs, this is convex and easy to solve
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Derivation of EM algorithm

▸Complete log-likelihood
ℓ# 𝜃 =$

$

log 𝑝 𝑥$ , 𝑧$ 𝜃

▸𝑄 function: Expected complete log likelihood 
𝑄 𝜃; 𝜃%&' = 𝑄(!"# 𝜃 = 𝔼𝒛…|𝒙…,(!"# ℓ# 𝜃

▸NOTE: Q is a function of 𝜃 given the previous parameter value 𝜃!"#
▸EM iteration

▸E-step: Form 𝑄 𝜃; 𝜃!"# around 𝜃!"#
▸M-step: 𝜃! = max

$
𝑄 𝜃; 𝜃!"#

▸See 11.4 of [ML] for derivation of EM steps
▸Hint: Write the joint density of 𝑥 and 𝑧 as:

𝑝 𝑥%, 𝑧% 𝜃 =8
&

𝜋&𝑝 𝑥% 𝜃&
'()!*&)

▸𝐼 𝑧! = 𝑗 is an indicator function that is 1 if the inside expression is true or 0 otherwise
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EM Theory: EM algorithm is guaranteed to increase 
observed likelihood, i.e., ∏/ 𝑝0/12345 𝑥/
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Step 1: Use Jensen’s inequality to get concave 
lower bound

▸Jensen’s inequality if 𝑓 is concave (e.g., 
log)

𝑓 𝔼 𝑥 ≥ 𝔼 𝑓 𝑥
▸ℓ 𝜃
▸= ∑1 log∑,! 𝑝 𝑥1 , 𝑧1; 𝜃

▸= ∑1 log∑,! 𝑞1 𝑧1
2 3!,,!;6
7! ,!

▸= ∑1 log 𝔼7!
2 3!,,!;6
7! ,!

▸≥ ∑1 𝔼7! log
2 3!,,!;6
7! ,!

▸≡ 𝑄1 𝜃; 𝑞 for any distribution  𝑞 =
𝑞*, ⋯ , 𝑞8
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𝔼 𝑥

𝔼 𝑓 𝑥

𝑓 𝔼 𝑥

𝑥% 𝑥&
𝑓 𝑥%

𝑓 𝑥&

Just theoretical inequality here.
No algorithm required to ensure this.
Next two steps require EM algorithm.



Step 2: Choose best lower bound using the 
current parameters (for each point 𝑥2)

▸𝑄) 𝜃, 𝑞) = ∑," 𝑞) 𝑧) log
: ;",,";<
=" ,"

▸= ∑," 𝑞) 𝑧) log
: ;" ; < : ," ;" ; <)

=" ,"

▸= ∑,% 𝑞1 𝑧1 log
2 ,% 3% ; 6)

7% ,%
+ ∑,% 𝑞1 𝑧1 log 𝑝 𝑥1 ; 𝜃

▸= ∑,% 𝑞1 𝑧1 log
2 ,% 3% ; 6)

7% ,%
+ log 𝑝 𝑥1 ; 𝜃

▸= −∑,% 𝑞1 𝑧1 log
7% ,%

2 ,% 3% ; 6)
+ log 𝑝 𝑥1 ; 𝜃

▸= −𝐾𝐿 𝑞1 ⋅ , 𝑝 ⋅ 𝑥1 ; 𝜃 ) + log 𝑝 𝑥1 ; 𝜃
▸Maximize 𝑄1 𝜃, 𝑞1 so ideally, 𝑞1 𝑧1 = 𝑝 𝑧1 𝑥1, 𝜃 so KL is 0
▸Computing 𝑝 𝑧1 𝑥1, 𝜃= is the E-step in the EM algorithm
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Step 2: Lower bound is tight at current 
parameters 𝜃; if 𝑞!" 𝑧! = 𝑝 𝑧! 𝑥! , 𝜃" (E-step)

▸The lower bound is tight with respect to the observed 
likelihood:
▸𝑄 𝜃?, 𝜃? = ∑)𝑄) 𝜃?, 𝑞?

▸= ∑)−𝐾𝐿 𝑞)? 𝑧) , 𝑝 𝑧) 𝑥) ; 𝜃? ) + log 𝑝 𝑥) ; 𝜃?

▸= ∑)−𝐾𝐿 𝑝 𝑧) 𝑥) ; 𝜃?), 𝑝 𝑧) 𝑥) ; 𝜃? ) + log 𝑝 𝑥) ; 𝜃?

▸= ∑) log 𝑝 𝑥) 𝜃?

▸= ℓ 𝜃?
▸Last step: KL is 0
▸In summary: 

𝑄 𝜃?, 𝜃? = ℓ 𝜃?
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The E-step ensures this equality 
where r",$! = 𝑝 𝑧" 𝑥" ; 𝜃%)
And 𝑞"% 𝑧" = 𝑝 𝑧" 𝑥" ; 𝜃%)



Step 3: Maximize the lower bound (M-step)

▸We setup the optimization problem to update 
the parameter based on the lower bound

𝜃-8* = argmax
4
𝑄 𝜃, 𝜃-

▸By simple definition of maximization, we have:
𝑄 𝜃-8*, 𝜃- ≥ 𝑄 𝜃- , 𝜃-
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Putting all the steps together, we can prove 
monotonic increase of the EM algorithm

▸Lower bound, maximization, tightness
ℓ 𝜃-8* ≥ 𝑄 𝜃-8*, 𝜃- ≥ 𝑄 𝜃- , 𝜃- = ℓ 𝜃-
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Step 1: Lower bound 
(Jensen’s Inequality)

Step 3: Maximization 
inequality (M step)

Step 2: Tightness of 
bound (E step)

See 11.4.7 in [ML] for full 
derivation of theoretical proof


