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Gaussian mixture models (GMM) can be used for
density estimation

1. General density estimation
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https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html

David I. Inouye 1



https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html

Even if each component distribution is independent,
the mixture may not be independent

» Each component distribution is spherical (i.e., independent)
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Gaussian mixture models (GMM) can be used for
flexible clustering

2. Flexible clustering

https://jakevdp.github.io/PythonDataScienceH
andbook/05.12-gaussian-mixtures.html
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Overview of Gaussian Mixture Models

» Introduction

> Mixture model definitions
> Simple average density
» Equivalent latent variable formulation

> EM Algorithm for GMMs

> Expectation step
> Maximization step

» Derivation of EM algorithm’s monotonic increase of
log likelihood
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Mixture distributions are weighted averages of
component distributions

» Mixture distribution

» Component weights 0 < 7;, < 1s.t. Y% =1

j=1T
> Component distributions p; (x)

> Simple form of mixture .

Pmixture (x) = z TP, (x)

j=1
> Exercise: Check that pixture integrates to 1.
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Mixture models can be viewed as
latent (or “hidden”) variable models

> Simple form of mixture k

Pmixture (X) = z Tipj (x)
j=1
> Let z € {1, ..., k} be an auxiliary indicator variable

> Let p(z = j) = m;, then the joint density model is:
p(x,z) = p(z)p(x|z)

> The distribution of x marginalizes over the latent variable z
which is equivalent to the mixture above

Picture () = ) p(6,2) = ) p(2p(xl2)
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Gaussian mixture models (GMM) are one of the
most common mixture distributions

» Form of Gaussian mixture model
k k

pemm(X) = Eﬂjpw(xi ui, %) = zP(Z = Don(x;z = j)
=1

j=1

Machine
Learning,
Murphy, —
2012. (a) (b)

Figure 1.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each
component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a).
Figure generated by mixGaussPlotDemo.
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MLE for mixtures is difficult
Reason 1: The algebraic form is more complex

» The mixture log likelihood cannot be simplified

arg ma)z( lOg pGMM(xi; T, Uy, "'uuszlJ ""Zk)
TLHj&j i

z lOg pGMM(xi; T, Uy, vy Ui 21' L Zk)

[
z logz nZipN(xi | nuZi' ZZi
i Zi
z 1082 p(z)pn (xi|z;)
l Zi

> Cannot exchange log and summation to cancel exp
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MLE for mixtures is difficult
Reason 2: Problem is non-convex
(and could have multiple local optima)

> The intuition is similar to the problem with k-
means clustering

Objective = 526.494
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See [ML, Ch. 11, pp. 347-348] for more detailed analysis.
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The Expectation-Maximization (EM) can estimate
models and is a generalization of k-means

> The EM algorithm for GMM alternates between
> Probabilistic/soft assignment of points
» Estimation of Gaussian for each component

» Similar to k-means which alternates between

» Hard assignment of points
» Estimation of mean of points in each cluster




EM Algorithm: Initialization

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 1 and 3

lteration 1 lteration 3

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM Algorithm: Iteration 5 and 16

lteration S

Machine Learning: A probabilistic perspective, Murphy, 2012.
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EM algorithm for Gaussian mixture models
Expectation step

» Randomly initialize mixture components
» Expectation step (determine soft assignments)
t . —
1y = p(z = jlxg, 671)
_ p(z;x;|0°1)
p(xi|0t1)
p(z;10" " )p(x; | 2,05 1)
Yz; p(Zi|0Dp(x; | 2,07 1)
t—1 yt—1
_ mpa(xle LT
— t—1 yt—1
i miepa (X k5 2K )

>
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EM algorithm for Gaussian mixture models
Maximization step

» Compute weighted mean and covariance using
soft assignments from E step




Derivation of EM algorithm

» Observed/marginal log likelihood
(if z; is unknown)

£(6) = Z log ) p(x;,7i; 0)

> If z; were observed (i.e., we knew the cluster labels),
then optimizing the complete log likelihood is easy

> Complete log likelihood (if z; is known)

£:(6) = ) logp(xi,7i;0) = ) logp(z)p (xi |2:)

> For GMMs, this is convex and easy to solve




Derivation of EM algorithm

» Complete log-likelihood

£(6) = ) 10gp(x;, z10)

» () function: Ex ect%gllcomplete iog likelihood
Q 9, 6 ) — Qet—l(g) — ]EZ |x...:9t_1 [’BC(H)]

» NOTE: Q is a function of 0 given the previous parameter value 9¢~1

» EM iteration
> E-step: Form Q(8; 6t~1) around #t 1
> M-step: 8t = max CH A

» See 11.4 of [ML] for derivation of EM steps
» Hint: Write the joint density of x and z as:

pGizile) = | | (mp(xile))

)I(Zi=f)

» I(z; = j) is an indicator function that1|s 1 if the inside expression is true or 0 otherwise
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EM Theory: EM algorithm is guaranteed to increase
observed likelihood, i.e., [ ; Pmixture (Xi)

et et+1 9t+2
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Step 1: Use Jensen’s inequality to get concave
lower bound ()

> Jensen’s inequality if f is concave (e.g.,

log)
>

> £(0)

= 2;log 2, p(x;, 2 6)
i.Zi;0

> = Yilog . qi(z;) pLxizii6)

qi(z;)
_ p(xy,z;0)]
"= 2ilog By, [ qi(zi)
p(xi,z;0)]
> =2 Eq, [log 2
» = Q;(6; q)) for any distribution g =
(C[1; 5 (qn Just theoretical inequality here.

No algorithm required to ensure this.
Next two steps require EM algorithm.
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Step 2: Choose best lower bound using the
current parameters (for each point x;)

i i;@
> Qi(0,q:) = 27,9:(z) 108p(:i(;) )

(xi; 0)p(zi |x;; 0
» =Y, qi(z;) log== q?(zzi) %i0)

p(Zc;ilgCZli')e) + 2z, 9:(z;) logp(x; ; 0)
p(zi|x;; 0)
qi(z;)
= =27, 9i(20) logp(;f‘lfj? 5y Tlogp(xi; 6)

»=—KL(q;(),p(|x;;0)) +logp(x;; 6)
> Maximize Q;(6, q;) so ideally, q;(z;) = p(z;|x;,6 ) soKLis O
> Computing p(z;|x;, 8Y) is the E-step in the EM algorithm

> = Yz, qi(z;) log

> = 2. qi(z;) log + logp(x;; 6)
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Step 2: Lower bound is tight at current

parameters 0% if g7 (z;) = p(z;|x;, %) (E-step)
> The lower bound is tight with respect to the observed
likelihood:

> Q(65,0%) = X,;0:(6%q")

» =3, —KL(q} (z:), p(zi|x; ;6%)) + logp(x; ; 6Y)

» =Y —KL(p(z;|x;;0%),p(zi|x; ;0%)) +logp(x; ; 6°)

> — Zi log p(x; |gt) The E-step ensures thi.s e;:quality
¢ wherer; ;. = p(z;|x; ;0%)
= £(0%) And q; (z;) = p(z;|x; ; 0%)

> Last step: KLis O
> [n summary:

Q(6%,6%) = £(6°)




Step 3: Maximize the lower bound (M-step)

> We setup the optimization problem to update
the parameter based on the lower bound

Ot = arg max 0(6,6Y)

> By simple definition of maximization, we have:
Q6"+, 6%) = (0%, 6°)




Putting all the steps together, we can prove
monotonic increase of the EM algorithm

» Lower bound, maximization, tightness
£(0°1) = Q(O*,0%) = Q(6%,6°) = £(6°)

Step 1: Lower bound Step 3: Maximization Step 2: Tightness of
(Jensen’s Inequality) inequality (M step) bound (E step)

See 11.4.7 in [ML] for full

Gt 0. o derivation of theoretical proof
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