Introduction to Machine Learning (and Notation)

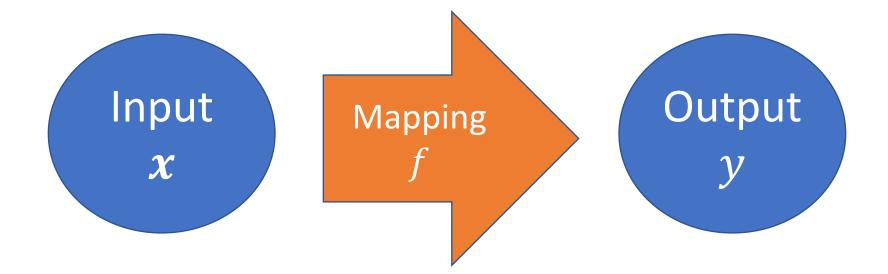
David I. Inouye Friday, September 2, 2022

Outline

Supervised learning

- Regression
- Classification
- Unsupervised learning
 - Dimensionality reduction (PCA)
 - Clustering
 - Generative models
- Other key concepts
 - Generalization
 - Curse of dimensionality
 - No free lunch theorem

The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output

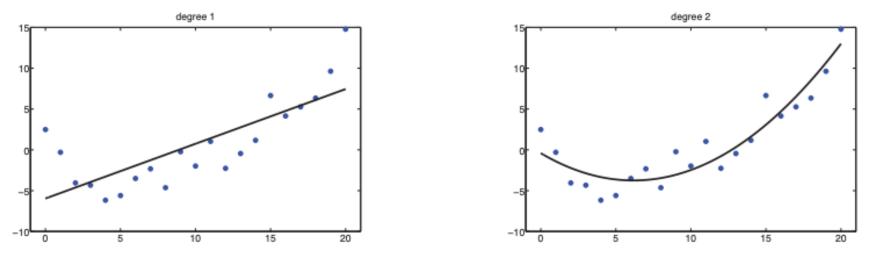


The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output given only input-output examples

The set of input-output pairs is called a <u>training set</u>, denoted by $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$

- lnput x_i
 - Called <u>features</u> (ML), <u>attributes</u>, or <u>covariates</u> (Stats).
 Sometimes just <u>variables</u>.
 - Can be <u>numeric</u>, <u>categorical</u>, <u>discrete</u>, or <u>nominal</u>.
 - Examples
 - [height, weight, age, gender]
 - $[x_1, x_2, \dots, x_d]$ A *d*-dimensional vector of numbers
 - Image
 - Email message
- Output y_i
 - Called output, response, or target (or label)
 - ▶ <u>Real-valued/numeric</u> output: e.g., $y_i \in \mathcal{R}$
 - <u>Categorical</u>, <u>discrete</u>, or <u>nominal</u> output: y_i from *finite* set, i.e., $y_i \in \{1, 2, \dots, c\}$

If the output y_i is numeric, then the problem is known as <u>regression</u>



NOTE: Input *x* does not have to be numeric. Only the output *y* must be numeric.

- Given height x_i, predict age y_i
- Predict GPA given SAT score
- Predict SAT score given GPA
- Predict GRE given SAT and GPA

If output is <u>categorical</u>, then the problem is known as <u>classification</u>

Given height x, predict "male" (y = 0) or "female" (y = 1)

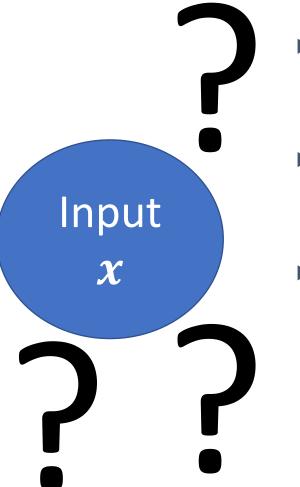
Given salary x₁ and mortgage payment x₂, predict defaulting on loan ("yes" or "no") predicted: cat

predicted: dog

predicted: cat

predicted: dog

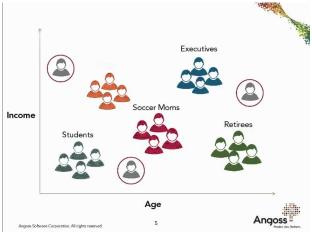
The goal of <u>unsupervised learning</u> is to model or understand the input data directly



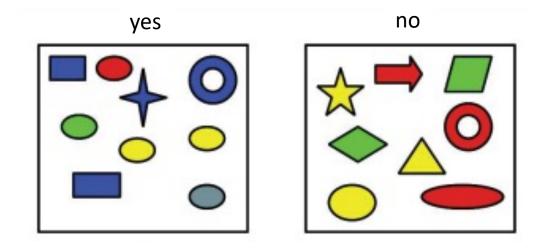
- Dimensionality reduction
- Clustering
- Generative models
- "What I cannot create I do not understand"
- Richard Feynman

In unsupervised learning, the training set is only a set of input values $\mathcal{D} = \{x_i\}_{i=1}^n$

- [Dimensionality reduction]
 Estimate a single number that summarizes all variables of wealth (e.g. credit score)
- [Clustering] Estimate natural groups of customers
- [Generative Models] Estimate the distribution of normal transactions to detect fraud (anomalies)



Given this dataset, should we use supervised or unsupervised learning?

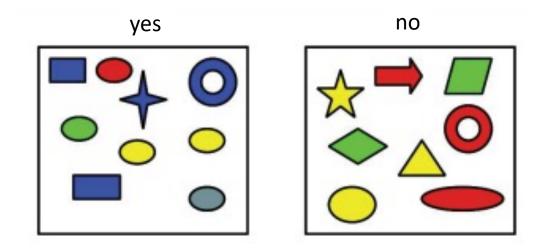


d features/attributes/covariates

	Color	Shape	Size (cm)	Is it good?
n samples/ observations/ examples	Blue	Square	10	yes
	Red	Ellipse	2.4	yes
	Red	Ellipse	20.7	no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

The dataset cannot determine the task, rather the context determines the task

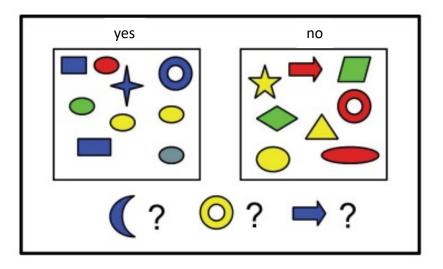


d features/attributes/covariates

	Color	Shape	Size (cm)	Is it good?
n samples/ observations/ examples	Blue	Square	10	yes
	Red	Ellipse	2.4	yes
	Red	Ellipse	20.7	no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

<u>Generalization</u> beyond the training set is the main goal of learning



d features/attributes/covariates

		Color	Shape	Size (cm)	Is it good?	
n samples/ observations/ examples	x ₁ x ₂	Blue	Square	10	yes	У1 У2
		Red	Ellipse	2.4	yes	
		Red	Ellipse	20.7	no	

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.

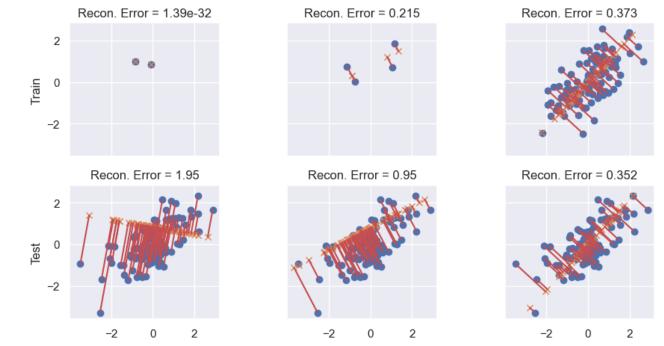
<u>Generalization</u> beyond the training set is the main goal of learning

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	- Training error slightly lower than test error	 Low training error Training error much lower than test error High variance
Regression			myst
Classification			
Deep learning	Error Validation Training Epochs	Error Validation Training Epochs	Error Validation Training Epochs
Remedies	Complexify modelAdd more featuresTrain longer		- Regularize - Get more data

Original source for figure unknown.

What does generalization look like for *unsupervised learning*?

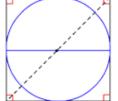
Generalization in dimensionality reduction

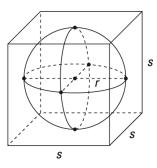


Generalization in generative models can be understood through the view of log likelihood. The <u>curse of dimensionality</u> is *unintuitive Example: Most space is in the "corners"*

- Ratio between unit hypersphere to unit hypercube
 - ► 1D : 2/2 = 1 ► 2D : $\frac{\pi}{4}$ = 0.7854

► 3D :
$$\frac{\frac{4}{3}\pi}{8} = 0.5238$$





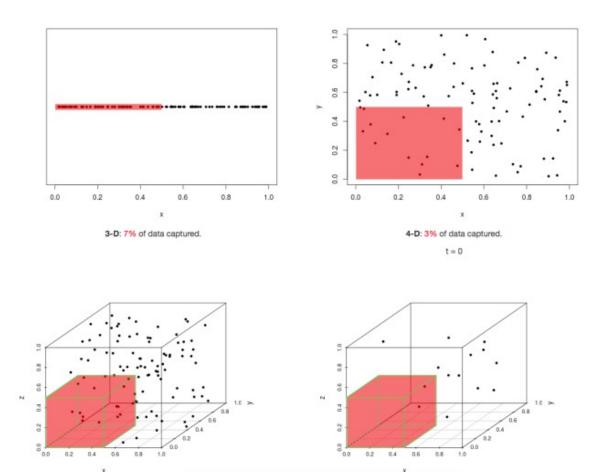
• d-dimensions: $V_d(r) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} r^d$

▶ Thus, for 10-D: 2.55/2^10 = 2.55/1024 = 0.00249

The <u>curse of dimensionality</u> is *unintuitive* The number of points in ½ cube is very small

1-D: 42% of data captured.

2-D: 14% of data captured.



https://eranraviv.com/curse-of-dimensionality/

The <u>curse of dimensionality</u> is *unintuitive Example: Need edge length to be 0.9 to capture 1/2 data samples in 10 dimensions*

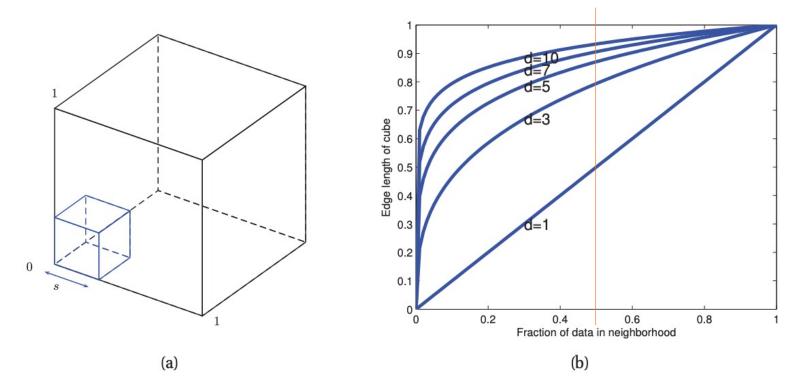
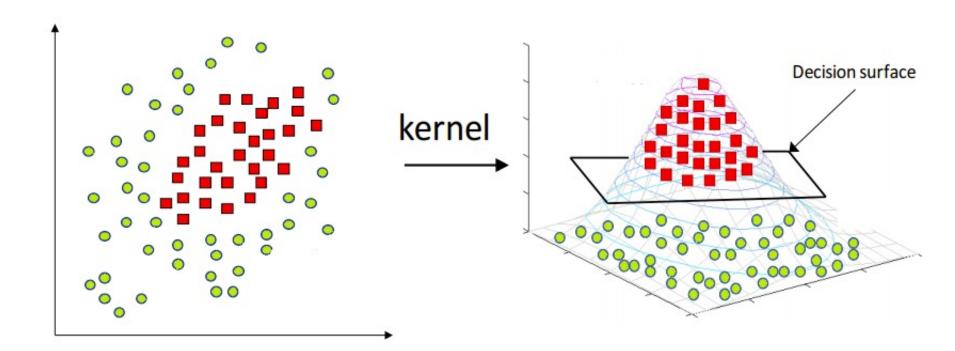


Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side *s* inside a larger unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by curseDimensionality.

From Machine Learning: A Probabilistic Perspective, Kevin Murphy, 2012.

The "blessing" of dimensionality (more data generally doesn't hurt if you can ignore)

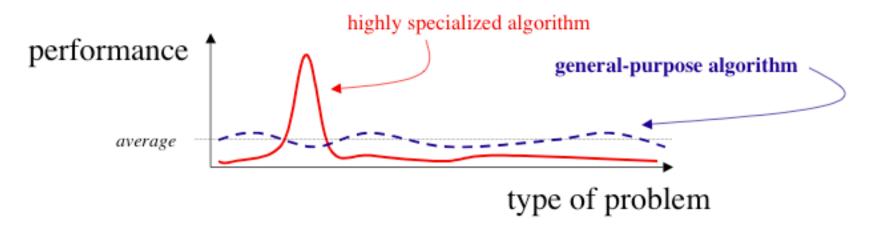


<u>https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-</u> <u>tuning-python-r/</u>

No Free Lunch Theorem

("All models are wrong, but some models are useful."*)

- All models are approximations
- All models make assumptions
- Assumptions are never perfect



* George Box (Box and Draper 1987, page 424).