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Outline

» Supervised learning
> Regression
> Classification

» Unsupervised learning
> Dimensionality reduction (PCA)
> Clustering
> Generative models

» Other key concepts
> Generalization
> Curse of dimensionality
> No free lunch theorem
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The goal of supervised learning is to estimate a
mapping (or function) between input and output

Mapping

f
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The goal of supervised learning is to estimate a
mapping (or function) between input and output
given only input-output examples
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The set of input-output pairs is called a training set,
denoted by D = {(x;, y;)}

> Input Xx;
» Called features (ML), attributes, or covariates (Stats).
Sometimes just variables,
» Can be numeric, categorical, discrete, or nominal.

> Examples
> [height, weight, age, gender]
> [x1, X5, +,X4] — A d-dimensional vector of numbers
> Image
» Email message

> OQutput y;
> Called output, response, or target (or label)
> Real-valued/numeric output: e.g., y; E R

>Categor|cal discrete, or nominal output: y; from finite
set, i.e., y; Tl,z,---,c}

David I. Inouye ' Introduction to Machine Learning



It the output y; is numeric,
then the problem is known as regression

degree 1 degree 2
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NOTE: Input x does not have to be numeric. Only the output y must be numeric.

> Given height x;, predict age y;
> Predict GPA given SAT score
> Predict SAT score given GPA
> Predict GRE given SAT and GPA
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If output is categorical,
then the problem is known as classification

> GiVen hEIght X, predicted: cat predictgd; cat
predict “male” (y = 0) N <G
or “female” (y = 1)

> Given salary x; and
mortgage payment x,,
predict defaulting on
loan (“yes” or “no”)
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The goal of unsupervised learning is to model or
understand the input data directly

> Dimensionality reduction

> Clustering

» Generative models

“What | cannot create | do not understand”
— Richard Feynman
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In unsupervised learning, the training set is only a
set of input values D = {x;}i-4

» [Dimensionality reduction]
Estimate a single number that
summarizes all variables of -
wealth (e.g. credit score)

Execoutives
> [Clustering] Estimate natural . 88 v
groups of customers 2fa gt 4R

> [Generative Models] Estimate
the distribution of normal
transactions to detect fraud = =5
(anomalies) ‘
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Given this dataset, should we use
supervised or unsupervised learning?

me = &
o125 0
N e O e

d features/attributes/covariates

e

Blue Square
n samples/
observations/  Red Ellipse 24 ve
examples Red Ellipse 20.7 no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.
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The dataset cannot determine the task,
rather the context determines the task

me = &
o125 0
N e O e

d features/attributes/covariates

e

Blue Square
n samples/
observations/  Red Ellipse 24 ve
examples Red Ellipse 20.7 no

Adapted from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.
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Generalization beyond the training set
is the main goal of learning

d features/attributes/covariates

M

Blue Square
n samples/ X1
observations/
Xy Red Ellipse 24 yes Vo
examples
Red Ellipse 20.7 no

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.
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Generalization beyond the training set
is the main goal of learning

Underfitting

Just right

Overfitting

Symptoms

- High training error

- Training error close

to test error
- High bias

- Training error slightly
lower than test error

- Low training error

- Training error much
lower than test error
- High variance

Regression

Classification

Deep learning

Error

Epochs

Error

Epochs

Error

Epochs

Remedies

- Complexify model
- Add more features
- Train longer

0 arivze
- Regularize

- Get more data

Original source for figure unknown.
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What does generalization look like for
unsupervised learning?

» Generalization in dimensionality reduction

Recon. Error = 1.39e-32 Recon. Error = 0.215 Recon. Error = 0.373
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> General|zat|on in generatlve models can be
understood through the view of log likelihood.
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The curse of dimensionality is unintuitive
Example: Most space is in the “corners”

» Ratio between unit hypersphere to unit

hypercube X
»1D:2/2 = 1 /:
»2D: 2 = 0.7854 \ —

4-
»3D: 3? = (0.5238
. . TL'% d S
> d-dimensions: V,;(r) = r(2+1)r
2

> Thus, for 10-D: 2.55/2710 = 2.55/1024 = 0.00249

David I. Inouye ' Introduction to Machine Learning



The curse of dimensionality is unintuitive
The number of points in % cube is very small

1-D: 42% of data captured 2-D: 14% of data captured,
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https://eranraviv.com/curse-of-dimensionality/
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The curse of dimensionality is unintuitive

Example: Need edge length to be 0.9 to capture 1/2
data samples in 10 dimensions
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(a) (b)

Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a

function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by
curseDimensionality.

From Machine Learning: A Probabilistic Perspective, Kevin Murphy, 2012.
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The “blessing” of dimensionality
(more data generally doesn’t hurt if you can ignore)
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https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-
tuning-python-r/
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No Free Lunch Theorem
(“All models are wrong, but some models are
useful.”*)

> All models are approximations
> All models make assumptions
» Assumptions are never perfect

highly specialized algorithm

. A
pCffOfmanCC general-purpose algorithm

— — —
average =N LT TN L L e emmmT T -~

type of problem

* George Box (Box and Draper 1987, page 424).
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