
Invertible Normalizing Flows
ECE57000: Artificial Intelligence

David I. Inouye

David I. Inouye 0

GAN Limitation:
Cannot compute density values

▸Evaluation of GANs is challenging
▸Explicit density models could use test log likelihood
▸“I think this looks better than that”
▸Inception-based scores

▸Cannot use for classification or outlier detection
▸Normalizing flows provide exact density values

David I. Inouye 1

Common problem with GANs: Mode collapse
hinders diversity of samples

▸Normalizing flows do not
suffer from mode collapse
as MLE is used

David I. Inouye 2

From: https://developers.google.com/machine-learning/gan/problems

http://papers.nips.cc/paper/6923-veegan-reducing-mode-
collapse-in-gans-using-implicit-variational-learning.pdf

https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163.

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

GAN Limitation: Cannot go from observed to
latent space, i.e. 𝑥 → 𝑧 not possible/easy

▸Cannot manipulate an observed image in latent
space
▸Cannot do the following, 𝑥 → 𝑧, 𝑧! = 𝑧 + 3, 𝑧! → 𝑥!
▸Rather, must start from fake image based on random
𝑧

David I. Inouye 3

All fake
images->

Normalizing flows enable interpolation between
real images

David I. Inouye 4

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Normalizing flows enable transformations of real
image along various features

David I. Inouye 5

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Normalizing flows enable more powerful
inference distributions 𝑞! 𝑧 𝑥 in VAEs

▸The probabilistic encoder in VAEs
requires 2 things:

1. Ability to sample from 𝑞! 𝑧 𝑥 via
reparameterization trick

2. Ability to compute exact density of
𝑞! 𝑧 𝑥 for
𝐾𝐿 𝑞! 𝑧 𝑥 , 𝑝" 𝑧 = 𝔼#∼%! 𝑧 𝑥 log

𝑞! 𝑧 𝑥
𝑝" 𝑧

▸Normalizing flows have these
capabilities and thus significantly
generalize the Gaussian 𝑞! 𝑧 𝑥

David I. Inouye 6

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved variational
inference with inverse autoregressive flow. Advances in neural information processing systems, 29, 4743-4751.

𝑥 space

𝑧 space

𝑞! 𝑧 𝑥 𝑝" 𝑥 𝑧

Overview of
Normalizing
Flows

7

David I. Inouye

Normalizing flow architectures

Design requirements Autoregressive and inverse
autoregressive

RealNVP and Glow
architecture ideas

Objective function for flows

Change of variables formula in
1D

Generalization to higher
dimensions via determinant of

Jacobian
Log likelihood of flows

Definition and comparison to GANs and VAEs

Motivation

Normalizing flows use invertible deep models for
the generator which allow more capabilities

▸Transforming between observed/input and latent
space is easy
▸𝑥 = 𝐺 (𝑧)
▸𝑧 = 𝐺"#(𝑥)

▸Simple sampling like GANs
▸𝑧 ∼ SimpleDistribution
▸𝑥 = 𝐺 𝑧 ∼ 𝑝̂$ 𝑥 , which is estimated distribution

▸Exact density is computable via change of variables
▸Standard maximum likelihood estimation can be used for

training

David I. Inouye 8

Comparing VAEs and normalizing flows:
Flows give zero reconstruction error

David I. Inouye 9

𝐺 = 𝐹!"

𝑧#

$𝑥- = 𝐺 𝐹 𝑥-
= 𝐺 𝐺./ 𝑥- = 𝑥-

⇒ 𝐿 𝑥-, $𝑥- = 𝐿 𝑥-, 𝑥- = 0

Normalizing
Flow

𝐹 = 𝐺!"

𝑥#

𝐹 𝐺

𝑧#𝑥# $𝑥- ∼ 𝑝 𝑥- 𝐺 𝑧-

𝐿 𝑥# , (𝑥#
VAE

Implicit generator via G = 𝐹!"
(only need to train encoder 𝐹)

Latent code has same dimensionality as input
(no dimensionality reduction)

Comparing GANs and normalizing flows:
Normalizing flows can use MLE training

David I. Inouye 10

𝐺

𝑧# $𝑥- = 𝐺 𝑧-

Adversarial	training	to	
compare	two	sets	of	
samples

GAN

𝐺 = 𝐹!"

𝑧#
Normalizing
Flow

𝐹 = 𝐺!"

𝑥# $𝑥- = 𝐺 𝑧-
= 𝐺 𝐺./ 𝑥- = 𝑥-

MLE	training	since	
density	function	known

Latent code has same dimensionality as input
(no dimensionality reduction)

Back to maximum likelihood estimation (MLE):
How can we compute the likelihood
for normalizing flows?

▸Suppose
▸𝑧 ∼ Uniform 0,1 , i. e. , 𝑝% 𝑧 = 1

(latent space is uniform)
▸𝐺 z = 2z
▸Thus, 𝑥 = 𝐺 𝑧 = 2𝑧.

▸What is the density function of 𝑥, what is
𝑝$ 𝑥 ?

David I. Inouye 11

Change of variables formula gives 𝑝! in terms of
the 𝑝" and the derivative of 𝐺#$

▸Key idea: Must conserve density volume (so
that distribution sums to 1).
▸𝑝$ 𝑥 𝑑𝑥 = 𝑝% 𝑧 𝑑𝑧 , this is like the
preservation of volume/area/mass.
▸Intuition: We only have 1 unit of “dirt” to move

around.
▸Rearrange above equation to get formula

𝑝$ 𝑥 =
𝑑𝑧
𝑑𝑥

𝑝% 𝑧 =
𝑑𝐺!" 𝑥
𝑑𝑥

𝑝% 𝐺!" 𝑥

David I. Inouye 12

Demo of change of variables

David I. Inouye 13

Derivation of change of variables
using CDF function (Increasing)

▸Assume 𝑥 = 𝐺 𝑧 , where 𝐺 𝑧 is an increasing function, i.e.,
𝑧/ ≤ 𝑧0 ⇒ 𝐺 𝑧/ ≤ 𝐺 𝑧0
𝑧/ ≤ 𝑧0 ⇒ 𝐺./ 𝑧/ ≤ 𝐺./ 𝑧0

▸Remember CDF
𝐹1 𝑎 = Pr 𝑥 ≤ 𝑎 = +

.2

3
𝑝1 𝑡 𝑑𝑡

▸Now 𝐹1 𝑎 = Pr 𝑥 ≤ 𝑎
▸= Pr 𝐺 𝑧 ≤ 𝑎

▸= Pr 𝐺./ 𝐺 𝑧 ≤ 𝐺./ 𝑎

▸= Pr 𝑧 ≤ 𝐺./ 𝑎
▸= 𝐹4 𝐺./ 𝑎

David I. Inouye 14

Derivation of change of variables
using CDF function (Increasing)

▸From the previous slide, we have that
𝐹& 𝑎 = 𝐹% 𝐺'(𝑎

▸Now take the derivative of both sides with respect to 𝑎

▸)*! +
)+

=
)*" ,#$ +

)+

▸𝑝& 𝑎 =
)*" ,#$ +

) ,#$ +
),#$ +

)+

▸𝑝& 𝑎 = 𝑝% 𝐺'(𝑎
),#$ +

)+

▸𝑝& 𝑎 = 𝑝% 𝐺'(𝑎
),#$ +

)+
▸What about decreasing functions?

David I. Inouye 15

Derivation of change of variables
using CDF function (Decreasing)

▸Assume 𝑥 = 𝐺 𝑧 , where 𝐺 𝑧 is a decreasing function, i.e.,
𝑧& ≤ 𝑧' ⇒ 𝐺 𝑧& ≥ 𝐺 𝑧'
𝑧& ≤ 𝑧' ⇒ 𝐺(& 𝑧& ≥ 𝐺(& 𝑧'

▸𝐹) 𝑎 = Pr 𝑥 ≤ 𝑎 = Pr 𝐺 𝑧 ≤ 𝑎

▸= Pr 𝐺(& 𝐺 𝑧 ≤ 𝐺(& 𝑎

▸= Pr 𝑧 ≥ 𝐺(& 𝑎
▸= 1 − 𝐹# 𝐺(& 𝑎
▸Now take the derivative of both sides with respect to 𝑎

𝑑𝐹) 𝑎
𝑑𝑎 = 𝑝) 𝑎

−
𝑑𝐹# 𝐺(& 𝑎

𝑑𝑎
= −

𝑑𝐹# 𝐺(& 𝑎
𝑑 𝐺(& 𝑎

𝑑𝐺(& 𝑎
𝑑𝑎

= −𝑝# 𝐺(& 𝑎
𝑑𝐺(& 𝑎
𝑑𝑎 = 𝑝# 𝐺(& 𝑎

𝑑𝐺(& 𝑎
𝑑𝑎

David I. Inouye 16

Inverse transform sampling
is based on change of variables

▸𝑧 ∼ Uniform 0,1
▸𝑣 ∼ AnotherDistribution
▸𝑥 = 𝐹&!" 𝑧 , where 𝐹&!" is the
inverse CDF for 𝑣
▸What is the distribution of 𝑥?

▸𝑝$ 𝑥 = 𝑝% 𝐹& 𝑥
'(% $
'$

▸𝑝$ 𝑥 = 1 𝑝& 𝑥 = 𝑝& 𝑥

David I. Inouye 17

𝐹*(& 𝑧

𝑧

𝑥

10

What about change of variables
in higher dimensions?

▸Let’s again build a little intuition (see demo)
▸Again, conservation of volume: Consider
infinitesimal expansion or shrinkage of volume

p 𝑥", 𝑥) 𝑑𝑥"𝑑𝑥) = 𝑝 𝑧", 𝑧) 𝑑𝑧"𝑑𝑧)
▸Given that Jacobian is all mixed derivatives we
get generalization for vector to vector invertible
functions:

𝑝$ 𝑥 = det 𝐽*&' 𝑥 𝑝% 𝐺!" 𝑥

David I. Inouye 18

Interpretation: What is the Jacobian again?
The best linear approximation at a point

▸The Jacobian definition:

𝑑𝑧
𝑑𝑥

= 𝐽4 𝑥 =

𝜕𝑧/
𝜕𝑥/

⋯
𝜕𝑧/
𝜕𝑥A

⋮ ⋱ ⋮
𝜕𝑧A
𝜕𝑥/

⋯
𝜕𝑧A
𝜕𝑥A

=

𝜕𝐺./ 𝑥 /
𝜕𝑥/

⋯
𝜕𝐺./ 𝑥 /
𝜕𝑥A

⋮ ⋱ ⋮
𝜕𝐺./ 𝑥 A

𝜕𝑥/
⋯

𝜕𝐺./ 𝑥 A
𝜕𝑥A

▸The determinant measures the local linear
expansion or shrinkage around a point

David I. Inouye 19

Fact: The determinant Jacobian of compositions of
functions is the product of determinant Jacobians

▸Suppose 𝐹 𝑥 = 𝐹) 𝐹" 𝑥
▸The Jacobian expands like the chain rule

𝐽(𝑥 = 𝐽() 𝐹" 𝑥 𝐽(' 𝑥 = 𝐽((𝐽('
▸If we take the determinant of the Jacobian, then
it becomes a product of determinants

det 𝐽(= det 𝐽((𝐽(' = det 𝐽((det 𝐽('
▸This will be useful since each layer of our flows
will be invertible

David I. Inouye 20

Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for
each layer

▸Simply optimize the minimize negative log
likelihood where 𝐹" = 𝐺#$

argmin
%B

−
1
𝑛
0
&

log 𝑝' 𝑥&; 𝜃

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. det 𝐽*! 𝑥.

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. + log det 𝐽*! 𝑥.

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. + ∑ℓ log det 𝐽*!ℓ

𝑧.
ℓ'(

where 𝑧.1 = 𝑥. , and 𝑧.ℓ = 𝐹/
ℓ 𝑧.ℓ'(

David I. Inouye 21

Overview of
Normalizing
Flows

22

David I. Inouye

Normalizing flow architectures

Design requirements Autoregressive and inverse
autoregressive

RealNVP and Glow
architecture ideas

Objective function for flows

Change of variables formula in
1D

Generalization to higher
dimensions via determinant of

Jacobian
Log likelihood of flows

Definition and comparison to GANs and VAEs

Motivation

Normalizing flow architectures:
How do we create these invertible layers?

▸Consider arbitrary invertible transformation 𝐹+
▸How often would det 𝐽*! need to be computed?

▸High computation costs
▸Determinant costs roughly 𝑂 𝑑2 even if Jacobian is

already computed!
▸Would need to be computed every stochastic

gradient iteration

David I. Inouye 23

How do we create these invertible layers?
Independent transformation on each dimension

▸𝑧" = 𝐹"(𝑥")
▸𝑧) = 𝐹)(𝑥))
▸𝑧, = 𝐹,(𝑥,)
▸What is the Jacobian?

𝐽+ =

𝑑𝐹& 𝑥&
𝑑𝑥&

0 0

0
𝑑𝐹' 𝑥'
𝑑𝑥'

0

0 0
𝑑𝐹, 𝑥,
𝑑𝑥,

David I. Inouye 24

How do we create these invertible layers?
Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(in	parallel)
▸𝑧% = 𝐹% 𝑥%
▸𝑧& = 𝐹& 𝑥&|𝑥%
▸𝑧' = 𝐹' 𝑥'|𝑥%, 𝑥&

▸Inverse – Sampling (conditioned on 𝑥 so must be sequential)
▸𝑥% = 𝐹%(% 𝑧%
▸𝑥& = 𝐹&(% 𝑧&|𝑥%
▸𝑥' = 𝐹'(% 𝑧'|𝑥%, 𝑥&

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽) =

*)-
*+-

0 0
*).
*+-

*).
*+.

0
*)/
*+-

*)/
*+.

*)/
*+/

David I. Inouye 25

Rezende, D., & Mohamed, S. (2015, June). Variational Inference with
Normalizing Flows. In International Conference on Machine Learning (pp.
1530-1538).

How do we create these invertible layers?
Inverse Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(sequential)
▸𝑧% = 𝐹% 𝑥%
▸𝑧& = 𝐹& 𝑥&|𝑧%
▸𝑧' = 𝐹' 𝑥'|𝑧%, 𝑧&

▸Inverse – Sampling (parallel)
▸𝑥% = 𝐹%(% 𝑧%
▸𝑥& = 𝐹&(% 𝑧&|𝑧%
▸𝑥' = 𝐹'(% 𝑧'|𝑧%, 𝑧&

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽) =

*)-
*+-

0 0
*).
*+-

*).
*+.

0
*)/
*+-

*)/
*+.

*)/
*+/

David I. Inouye 26

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In Advances in
neural information processing systems (pp. 4743-4751).

Scale-and-shift simple form of invertible functions
(MAF https://arxiv.org/pdf/1705.07057.pdf)

▸Forward	– Density	estimation	(parallel)
▸𝑧/ = exp(𝛼/)𝑥/ + 𝜇/
▸𝑧0 = exp(𝛼0)𝑥0 + 𝜇0, 𝛼0 = 𝑓0 𝑥/ , 𝜇0 = 𝑔0(𝑥/)
▸𝑧D = exp(𝛼D)𝑥D + 𝜇D, 𝛼D = 𝑓D 𝑥/, 𝑥0 , 𝜇D = 𝑔D(𝑥/, 𝑥0)

▸What is the Jacobian and determinant?

𝐽(=

exp(𝛼") 0 0
'%(
'$'

exp 𝛼) 0
'%)
'$'

'%)
'$(

exp 𝛼,

David I. Inouye 27

https://arxiv.org/pdf/1705.07057.pdf

RealNVP and GLOW: Several key architecture
ideas for image-based normalizing flows

1. Coupling layers
2. Invertible squeeze operation
3. Split dimensions along channel
4. Hierarchical structure
5. 1 x 1 convolutions

David I. Inouye 28

Coupling layers allow parallel
density estimation and sampling

▸Keep some set of features fixed and transform
others
▸𝑧(:.'(= 𝑥(:.'(
▸𝑧.:) = exp 𝑓 𝑥(:.'(⨀ 𝑥.:) + 𝑔 𝑥(:.'(

▸Reverse or shuffle coordinates and repeat
▸What is Jacobian?

𝐽(=
𝐼 0

𝐽-./00 diag exp 𝑓 𝑥":#!"

David I. Inouye 29

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

How to split dimensions for coupling layers?
The squeeze operation trades off between spatial and
channel dimensions

David I. Inouye 30

Squeeze

H x W x C H/2 x W/2 x 4C
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

How to split dimensions for coupling layers?
Checkboard or channel-wise masking can be used to
separate fixed and non-fixed set of variables

David I. Inouye 31

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

White are fixed, i.e., 𝑥/:-./, and black are transformed, 𝑥-:A.

Hierarchical factorization is like an invertible
dimensionality reduction method

David I. Inouye 32

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

▸After each block, half
of the dimensions are
fixed and the rest pass
through more
transformations

▸Intuitively, the
important part of the
signal propagates
deeper

GLOW: Convolutional flows
1 x 1 invertible convolutions are like
fully connected layers for each pixel

David I. Inouye 33

▸Image tensor: h × 𝑤 × 𝑐
▸If we use 𝑐 filters than we map from a h × 𝑤 × 𝑐 to another h × 𝑤 × 𝑐

image
▸The number of parameters is a matrix 𝑊 ∈ ℝ,×,
▸1x1 convolutions can be seen as a linear transform along the channel

dimension (mixes the channel dimensions)

(*) =

Highly realistic random samples from powerful
flow model (GLOW)

David I. Inouye 34

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

More recent normalizing flows

▸Neural Spline Flows and Neural Autoregressive
Flows – Add more flexible 1D transforms
▸Flow++ - Careful tweaks to some previous models
▸FFJORD – Uses neural Ordinary Differential
Equations (ODE) to implicitly define invertible
functions
▸Residual Flows – Careful construction of residual
networks that are invertible (uses Lipschitz idea)
▸MaCow – Masked Convolutional Generative Flow
(carefully constructed masked convolutions to
ensure invertibility)

David I. Inouye 35

Similar concepts can be used to generate realistic
audio (WaveGlow)

▸Listen to some examples
https://nv-adlr.github.io/WaveGlow

▸Very similar concepts for audio generation

David I. Inouye 36

https://nv-adlr.github.io/WaveGlow

