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GAN Limitation:
Cannot compute density values

▸Evaluation of GANs is challenging
▸Explicit density models could use test log likelihood
▸“I think this looks better than that”
▸Inception-based scores

▸Cannot use for classification or outlier detection
▸Normalizing flows provide exact density values
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Common problem with GANs: Mode collapse
hinders diversity of samples

▸Normalizing flows do not 
suffer from mode collapse 
as MLE is used
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From: https://developers.google.com/machine-learning/gan/problems

http://papers.nips.cc/paper/6923-veegan-reducing-mode-
collapse-in-gans-using-implicit-variational-learning.pdf

https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans

Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative 
adversarial networks. arXiv preprint arXiv:1611.02163.

http://papers.nips.cc/paper/6923-veegan-reducing-mode-collapse-in-gans-using-implicit-variational-learning.pdf
https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans


GAN Limitation: Cannot go from observed to 
latent space, i.e. 𝑥 → 𝑧 not possible/easy

▸Cannot manipulate an observed image in latent 
space
▸Cannot do the following, 𝑥 → 𝑧,  𝑧! = 𝑧 + 3,  𝑧! → 𝑥!
▸Rather, must start from fake image based on random 
𝑧

David I. Inouye 3

All fake 
images->



Normalizing flows enable interpolation between 
real images
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https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf


Normalizing flows enable transformations of real 
image along various features
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https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf


Normalizing flows enable more powerful 
inference distributions 𝑞! 𝑧 𝑥 in VAEs

▸The probabilistic encoder in VAEs 
requires 2 things:

1. Ability to sample from 𝑞! 𝑧 𝑥 via 
reparameterization trick

2. Ability to compute exact density of 
𝑞! 𝑧 𝑥 for
𝐾𝐿 𝑞! 𝑧 𝑥 , 𝑝" 𝑧 = 𝔼#∼%! 𝑧 𝑥 log

𝑞! 𝑧 𝑥
𝑝" 𝑧

▸Normalizing flows have these 
capabilities and thus significantly 
generalize the Gaussian 𝑞! 𝑧 𝑥

David I. Inouye 6

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Improved variational 
inference with inverse autoregressive flow. Advances in neural information processing systems, 29, 4743-4751.

𝑥 space

𝑧 space

𝑞! 𝑧 𝑥 𝑝" 𝑥 𝑧
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Normalizing flows use invertible deep models for 
the generator which allow more capabilities

▸Transforming between observed/input and latent 
space is easy
▸𝑥 = 𝐺 (𝑧)
▸𝑧 = 𝐺"#(𝑥)

▸Simple sampling like GANs
▸𝑧 ∼ SimpleDistribution
▸𝑥 = 𝐺 𝑧 ∼ 𝑝̂$ 𝑥 , which is estimated distribution

▸Exact density is computable via change of variables
▸Standard maximum likelihood estimation can be used for 

training
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Comparing VAEs and normalizing flows:
Flows give zero reconstruction error
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𝐺 = 𝐹!"

𝑧#

$𝑥- = 𝐺 𝐹 𝑥-
= 𝐺 𝐺./ 𝑥- = 𝑥-

⇒ 𝐿 𝑥-, $𝑥- = 𝐿 𝑥-, 𝑥- = 0

Normalizing 
Flow

𝐹 = 𝐺!"

𝑥#

𝐹 𝐺

𝑧#𝑥# $𝑥- ∼ 𝑝 𝑥- 𝐺 𝑧-

𝐿 𝑥# , (𝑥#
VAE

Implicit generator via G = 𝐹!"
(only need to train encoder 𝐹)

Latent code has same dimensionality as input
(no dimensionality reduction)



Comparing GANs and normalizing flows:
Normalizing flows can use MLE training
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𝐺

𝑧# $𝑥- = 𝐺 𝑧-

Adversarial	training	to	
compare	two	sets	of	
samples

GAN

𝐺 = 𝐹!"

𝑧#
Normalizing 
Flow

𝐹 = 𝐺!"

𝑥# $𝑥- = 𝐺 𝑧-
= 𝐺 𝐺./ 𝑥- = 𝑥-

MLE	training	since	
density	function	known

Latent code has same dimensionality as input
(no dimensionality reduction)



Back to maximum likelihood estimation (MLE):
How can we compute the likelihood 
for normalizing flows?

▸Suppose
▸𝑧 ∼ Uniform 0,1 , i. e. , 𝑝% 𝑧 = 1

(latent space is uniform)
▸𝐺 z = 2z
▸Thus, 𝑥 = 𝐺 𝑧 = 2𝑧.

▸What is the density function of 𝑥, what is 
𝑝$ 𝑥 ?
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Change of variables formula gives 𝑝! in terms of 
the 𝑝" and the derivative of 𝐺#$

▸Key idea: Must conserve density volume (so 
that distribution sums to 1).
▸𝑝$ 𝑥 𝑑𝑥 = 𝑝% 𝑧 𝑑𝑧 , this is like the 
preservation of volume/area/mass.
▸Intuition: We only have 1 unit of “dirt” to move 

around.
▸Rearrange above equation to get formula

𝑝$ 𝑥 =
𝑑𝑧
𝑑𝑥

𝑝% 𝑧 =
𝑑𝐺!" 𝑥
𝑑𝑥

𝑝% 𝐺!" 𝑥

David I. Inouye 12



Demo of change of variables
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Derivation of change of variables 
using CDF function (Increasing)

▸Assume 𝑥 = 𝐺 𝑧 , where 𝐺 𝑧 is an increasing function, i.e., 
𝑧/ ≤ 𝑧0 ⇒ 𝐺 𝑧/ ≤ 𝐺 𝑧0
𝑧/ ≤ 𝑧0 ⇒ 𝐺./ 𝑧/ ≤ 𝐺./ 𝑧0

▸Remember CDF 
𝐹1 𝑎 = Pr 𝑥 ≤ 𝑎 = +

.2

3
𝑝1 𝑡 𝑑𝑡

▸Now 𝐹1 𝑎 = Pr 𝑥 ≤ 𝑎
▸= Pr 𝐺 𝑧 ≤ 𝑎

▸= Pr 𝐺./ 𝐺 𝑧 ≤ 𝐺./ 𝑎

▸= Pr 𝑧 ≤ 𝐺./ 𝑎
▸= 𝐹4 𝐺./ 𝑎
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Derivation of change of variables 
using CDF function (Increasing)

▸From the previous slide, we have that 
𝐹& 𝑎 = 𝐹% 𝐺'( 𝑎

▸Now take the derivative of both sides with respect to 𝑎

▸)*! +
)+

=
)*" ,#$ +

)+

▸𝑝& 𝑎 =
)*" ,#$ +

) ,#$ +
),#$ +

)+

▸𝑝& 𝑎 = 𝑝% 𝐺'( 𝑎
),#$ +

)+

▸𝑝& 𝑎 = 𝑝% 𝐺'( 𝑎
),#$ +

)+
▸What about decreasing functions?
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Derivation of change of variables 
using CDF function (Decreasing)

▸Assume 𝑥 = 𝐺 𝑧 , where 𝐺 𝑧 is a decreasing function, i.e., 
𝑧& ≤ 𝑧' ⇒ 𝐺 𝑧& ≥ 𝐺 𝑧'
𝑧& ≤ 𝑧' ⇒ 𝐺(& 𝑧& ≥ 𝐺(& 𝑧'

▸𝐹) 𝑎 = Pr 𝑥 ≤ 𝑎 = Pr 𝐺 𝑧 ≤ 𝑎

▸= Pr 𝐺(& 𝐺 𝑧 ≤ 𝐺(& 𝑎

▸= Pr 𝑧 ≥ 𝐺(& 𝑎
▸= 1 − 𝐹# 𝐺(& 𝑎
▸Now take the derivative of both sides with respect to 𝑎

𝑑𝐹) 𝑎
𝑑𝑎 = 𝑝) 𝑎

−
𝑑𝐹# 𝐺(& 𝑎

𝑑𝑎
= −

𝑑𝐹# 𝐺(& 𝑎
𝑑 𝐺(& 𝑎

𝑑𝐺(& 𝑎
𝑑𝑎

= −𝑝# 𝐺(& 𝑎
𝑑𝐺(& 𝑎
𝑑𝑎 = 𝑝# 𝐺(& 𝑎

𝑑𝐺(& 𝑎
𝑑𝑎
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Inverse transform sampling
is based on change of variables

▸𝑧 ∼ Uniform 0,1
▸𝑣 ∼ AnotherDistribution
▸𝑥 = 𝐹&!" 𝑧 , where 𝐹&!" is the 
inverse CDF for 𝑣
▸What is the distribution of 𝑥?

▸𝑝$ 𝑥 = 𝑝% 𝐹& 𝑥
'(% $
'$

▸𝑝$ 𝑥 = 1 𝑝& 𝑥 = 𝑝& 𝑥
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𝐹*(& 𝑧

𝑧

𝑥
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What about change of variables
in higher dimensions?

▸Let’s again build a little intuition (see demo)
▸Again, conservation of volume: Consider 
infinitesimal expansion or shrinkage of volume 

p 𝑥", 𝑥) 𝑑𝑥"𝑑𝑥) = 𝑝 𝑧", 𝑧) 𝑑𝑧"𝑑𝑧)
▸Given that Jacobian is all mixed derivatives we 
get generalization for vector to vector invertible 
functions:

𝑝$ 𝑥 = det 𝐽*&' 𝑥 𝑝% 𝐺!" 𝑥
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Interpretation: What is the Jacobian again?
The best linear approximation at a point

▸The Jacobian definition:

𝑑𝑧
𝑑𝑥

= 𝐽4 𝑥 =

𝜕𝑧/
𝜕𝑥/

⋯
𝜕𝑧/
𝜕𝑥A

⋮ ⋱ ⋮
𝜕𝑧A
𝜕𝑥/

⋯
𝜕𝑧A
𝜕𝑥A

=

𝜕𝐺./ 𝑥 /
𝜕𝑥/

⋯
𝜕𝐺./ 𝑥 /
𝜕𝑥A

⋮ ⋱ ⋮
𝜕𝐺./ 𝑥 A

𝜕𝑥/
⋯

𝜕𝐺./ 𝑥 A
𝜕𝑥A

▸The determinant measures the local linear
expansion or shrinkage around a point
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Fact: The determinant Jacobian of compositions of 
functions is the product of determinant Jacobians

▸Suppose 𝐹 𝑥 = 𝐹) 𝐹" 𝑥
▸The Jacobian expands like the chain rule

𝐽( 𝑥 = 𝐽() 𝐹" 𝑥 𝐽(' 𝑥 = 𝐽((𝐽('
▸If we take the determinant of the Jacobian, then 
it becomes a product of determinants

det 𝐽( = det 𝐽((𝐽(' = det 𝐽(( det 𝐽('
▸This will be useful since each layer of our flows 
will be invertible
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Okay, now back to learning flows:
The log likelihood is the sum of determinant terms for 
each layer 

▸Simply optimize the minimize negative log 
likelihood where 𝐹" = 𝐺#$

argmin
%B

−
1
𝑛
0
&

log 𝑝' 𝑥&; 𝜃

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. det 𝐽*! 𝑥.

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. + log det 𝐽*! 𝑥.

▸− (
-
∑. log 𝑝% 𝐹/ 𝑥. + ∑ℓ log det 𝐽*!ℓ

𝑧.
ℓ'(

where 𝑧.1 = 𝑥. , and 𝑧.ℓ = 𝐹/
ℓ 𝑧.ℓ'(
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Normalizing flow architectures:
How do we create these invertible layers?

▸Consider arbitrary invertible transformation 𝐹+
▸How often would det 𝐽*! need to be computed?

▸High computation costs
▸Determinant costs roughly 𝑂 𝑑2 even if Jacobian is 

already computed!
▸Would need to be computed every stochastic 

gradient iteration
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How do we create these invertible layers?
Independent transformation on each dimension

▸𝑧" = 𝐹"(𝑥")
▸𝑧) = 𝐹)(𝑥))
▸𝑧, = 𝐹,(𝑥,)
▸What is the Jacobian?

𝐽+ =

𝑑𝐹& 𝑥&
𝑑𝑥&

0 0

0
𝑑𝐹' 𝑥'
𝑑𝑥'

0

0 0
𝑑𝐹, 𝑥,
𝑑𝑥,
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How do we create these invertible layers?
Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(in	parallel)
▸𝑧% = 𝐹% 𝑥%
▸𝑧& = 𝐹& 𝑥&|𝑥%
▸𝑧' = 𝐹' 𝑥'|𝑥%, 𝑥&

▸Inverse – Sampling (conditioned on 𝑥 so must be sequential)
▸𝑥% = 𝐹%(% 𝑧%
▸𝑥& = 𝐹&(% 𝑧&|𝑥%
▸𝑥' = 𝐹'(% 𝑧'|𝑥%, 𝑥&

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽) =

*)-
*+-

0 0
*).
*+-

*).
*+.

0
*)/
*+-

*)/
*+.

*)/
*+/
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Rezende, D., & Mohamed, S. (2015, June). Variational Inference with 
Normalizing Flows. In International Conference on Machine Learning (pp. 
1530-1538).



How do we create these invertible layers?
Inverse Autoregressive Flows based on chain rule

▸Forward	- Density	estimation	(sequential)
▸𝑧% = 𝐹% 𝑥%
▸𝑧& = 𝐹& 𝑥&|𝑧%
▸𝑧' = 𝐹' 𝑥'|𝑧%, 𝑧&

▸Inverse – Sampling (parallel)
▸𝑥% = 𝐹%(% 𝑧%
▸𝑥& = 𝐹&(% 𝑧&|𝑧%
▸𝑥' = 𝐹'(% 𝑧'|𝑧%, 𝑧&

▸What is the Jacobian and determinant?
▸Product of diagonal!

𝐽) =

*)-
*+-

0 0
*).
*+-

*).
*+.

0
*)/
*+-

*)/
*+.

*)/
*+/
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Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. 
(2016). Improved variational inference with inverse autoregressive flow. In Advances in 
neural information processing systems (pp. 4743-4751).



Scale-and-shift simple form of invertible functions 
(MAF https://arxiv.org/pdf/1705.07057.pdf)

▸Forward	– Density	estimation	(parallel)
▸𝑧/ = exp(𝛼/)𝑥/ + 𝜇/
▸𝑧0 = exp(𝛼0)𝑥0 + 𝜇0, 𝛼0 = 𝑓0 𝑥/ , 𝜇0 = 𝑔0(𝑥/)
▸𝑧D = exp(𝛼D)𝑥D + 𝜇D, 𝛼D = 𝑓D 𝑥/, 𝑥0 , 𝜇D = 𝑔D(𝑥/, 𝑥0)

▸What is the Jacobian and determinant?

𝐽( =

exp(𝛼") 0 0
'%(
'$'

exp 𝛼) 0
'%)
'$'

'%)
'$(

exp 𝛼,
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https://arxiv.org/pdf/1705.07057.pdf


RealNVP and GLOW: Several key architecture 
ideas for image-based normalizing flows

1. Coupling layers
2. Invertible squeeze operation
3. Split dimensions along channel
4. Hierarchical structure
5. 1 x 1 convolutions
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Coupling layers allow parallel 
density estimation and sampling 

▸Keep some set of features fixed and transform 
others
▸𝑧(:.'( = 𝑥(:.'(
▸𝑧.:) = exp 𝑓 𝑥(:.'( ⨀ 𝑥.:) + 𝑔 𝑥(:.'(

▸Reverse or shuffle coordinates and repeat
▸What is Jacobian?

𝐽( =
𝐼 0

𝐽-./00 diag exp 𝑓 𝑥":#!"
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Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



How to split dimensions for coupling layers?
The squeeze operation trades off between spatial and 
channel dimensions
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Squeeze

H x W x C H/2 x W/2 x 4C
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.



How to split dimensions for coupling layers?
Checkboard or channel-wise masking can be used to 
separate fixed and non-fixed set of variables
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Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

White are fixed, i.e., 𝑥/:-./, and black are transformed, 𝑥-:A.



Hierarchical factorization is like an invertible 
dimensionality reduction method
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Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

▸After each block, half 
of the dimensions are 
fixed and the rest pass 
through more 
transformations

▸Intuitively, the 
important part of the 
signal propagates 
deeper



GLOW: Convolutional flows
1 x 1 invertible convolutions are like 
fully connected layers for each pixel
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▸Image tensor: h × 𝑤 × 𝑐
▸If we use 𝑐 filters than we map from a h × 𝑤 × 𝑐 to another h × 𝑤 × 𝑐

image
▸The number of parameters is a matrix 𝑊 ∈ ℝ,×,
▸1x1 convolutions can be seen as a linear transform along the channel 

dimension (mixes the channel dimensions)

(*) =



Highly realistic random samples from powerful 
flow model (GLOW)
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https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf


More recent normalizing flows

▸Neural Spline Flows and Neural Autoregressive 
Flows – Add more flexible 1D transforms
▸Flow++ - Careful tweaks to some previous models
▸FFJORD – Uses neural Ordinary Differential 
Equations (ODE) to implicitly define invertible 
functions
▸Residual Flows – Careful construction of residual 
networks that are invertible (uses Lipschitz idea)
▸MaCow – Masked Convolutional Generative Flow 
(carefully constructed masked convolutions to 
ensure invertibility)
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Similar concepts can be used to generate realistic 
audio (WaveGlow)

▸Listen to some examples 
https://nv-adlr.github.io/WaveGlow

▸Very similar concepts for audio generation
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https://nv-adlr.github.io/WaveGlow

