(Biased) Overview of A.I. Topics

David I. Inouye

High-Level Categorization of Al Topics

1. Artificial Intelligence (other than topics below)

2. Machine Learning (& Deep Learning)

3. Computer Vision

4. Natural Language Processing

1. Artificial Intelligence (Based on AAAI topic list)

- Cognitive modeling and systems
- Constraint Satisfaction/ Optimization
- Game theory
- Human + Al
- Knowledge representation and reasoning
- Robotics

Al: Cognitive Modeling

- Models of human/animal cognition
- Based on psychological theory and experiments
- 2 Goals
 - AI -> Cognitive Science: Understand/test underlying cognitive mechanisms by computational modeling
 - Cognitive Science -> Al: Improve computational methods via insights from cognitive science

Al: Constraint Satisfaction / Heuristic Optimization

Eight queens puzzle

Map coloring problem

- Real-world
 - Resource allocation
 - Scheduling

AI: Game Theory

Prisoner's dilemma

- Real-world
 - Google Ads bidding
 - Connections to "Generative Adversarial Networks"

Al: Human + Al

- Crowdsourcing
 - "Stop spam, read books"

Human-robot interactions

https://www.sciencedirect.com/science/ article/pii/S0004370216300790

AI: Knowledge representation and reasoning

Knowledge graphs

https://arxiv.org/pdf/1503.00759.pdf

- Inferences in knowledge graphs
 - Did Alec Guinness ever play a Science Fiction character?

2. Machine Learning (based on NeurIPS Topics)

- Learning with limited labels
- AutoML / Meta-learning
- Generative / probabilistic models
- Reinforcement learning
- Explainable AI
- Domain Generalization

ML: Learning with limited labels

Active learning

Few-Shot Learning

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18

<u>/a-guide-to-learning-with-</u> limited-labeled-data/

ML: AutoML / Meta-learning

https://cloud.google.com/automl-tables/?hl=vi

ML: Generative/Probabilistic Models

Density estimation / Graphical Models

ML: Topic Models

http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf

ML: Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Image to image translation via GANs

David I. Inouye

ML: Invertible networks

Invertible Flows

https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf

Deep Density Destructors

https://www.davidinouye.co m/publication/inouye-2018deep/inouye-2018-deep.pdf

ML: Reinforcement Learning

Game playing

- Bandit algorithms (simpler form of RL)
 - Which Google search result should I show?

Loan approval: "Could the model make a catastrophic mistake?"

ML: Explainable Al

Why model explanations? Accuracy is insufficient for many applications

Self-driving cars: "Does the model obey common sense intuitions?"

Bail decisions: "Is the model biased because of historical discrimination?"

Healthcare: "Does the model agree with doctor's knowledge?"

Military strategy: "How will the model perform in adversarial settings?"

ML: Domain Generalization

Distribution shifts in the real-world

How can you train models so that they work in new unseen test domains?

Koh, P. W., Sagawa, S., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR. https://wilds.stanford.edu/datasets/

3. Computer Vision (Based on CVPR sessions)

Classic tasks

▶ 3D Multiview / Depth estimation

Synthesis

CV: Classic Tasks

Recognition

http://www.cs.toronto.e du/~fritz/absps/imagene t.pdf

Segmentation

http://vladlen.info/publications/feature-space-optimization-for-semantic-video-segmentation/

CV: 3D Multiview / Depth estimation

https://vision.in.tum.de/research/imagebased 3d reconstruction/multiviewreconstruction

 $\frac{https://towards datascience.com/depth-estimation-on-camera-images-using-densenets-ac 454 caa 893}{}$

CV: Image / Video Generation (Synthesis)

Style transfer

https://www.cvfoundation.org/openaccess /content cvpr 2016/paper s/Gatys Image Style Trans fer CVPR 2016 paper.pdf

Sketch to draw

https://techcrunch.com/2019/03/18/ nvidia-ai-turns-sketches-intophotorealistic-landscapes-in-seconds/

4. Natural Language Processing (based on <u>ACL</u> 2019 Call for Papers (CFP))

- Tagging and Parsing
- Information Extraction and Text Mining
- Dialogue Systems / Question Answering
- Applications
 - Summarization
 - Sentiment Analysis
 - Machine Translation

NLP: Ambiguity is huge challenge in NLP

NLP: Tagging and Parsing

NLP: Information Extraction and Text Mining

https://www.ontotext.com/knowledgehub/fundamentals/information-extraction/

NLP: Dialogue Systems / Question Answering

https://arxiv.org/pdf/1711.01731.pdf

High-Level Categorization of Al Topics

1. Artificial Intelligence (other than topics below)

2. Machine Learning (& Deep Learning)

3. Computer Vision

4. Natural Language Processing