
Brief Review of Linear Algebra
Content and structure mainly from: http://www.deeplearningbook.org/contents/linear_algebra.html
(http://www.deeplearningbook.org/contents/linear_algebra.html)
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Scalars
Single number
Denoted as lowercase letter
Examples

 - Real number
 - Finite set

 - Bounded set

𝑥 ∈ ℝ
𝑦 ∈ {0, 1,… ,𝐶}
𝑢 ∈ [0, 1]
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Vectors
Array of numbers
In notation, we usually consider vectors to be "column vectors"
Denoted as lowercase letter (often bolded)
Dimension is often denoted by , , or .
Access elements via subscript, e.g.,  is the -th element
Examples

 - Finite set
 - Bounded set

𝑑 𝐷 𝑝

𝑥𝑖 𝑖

𝐱 ∈ ℝ𝑑

𝐱 =










𝑥1

𝑥2

⋮
𝑥𝑑










𝐱 = [ , ,… ,𝑥1 𝑥2 𝑥𝑑 ]
𝑇

𝐳 = [ , ,… ,𝑥1
⎯ ⎯⎯⎯

√ 𝑥2
⎯ ⎯⎯⎯

√ 𝑥𝑑
⎯ ⎯⎯⎯

√ ]𝑇

𝐲 ∈ {0, 1,… ,𝐶}𝑑

𝐮 ∈ [0, 1]𝑑

1.1343 
-5 

import numpy as np
import matplotlib.pyplot as plt

x = 1.1343
print(x)
z = int(-5)
print(z)

http://www.deeplearningbook.org/contents/linear_algebra.html
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Note: The operator +  does different things on
numpy arrays vs Python lists

For lists, Python concatenates the lists
For numpy arrays, numpy performs an element-wise addition
Similarly, for other binary operators such as - , + , * , and /

In [4]:
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Matrices
2D array of numbers
Denoted as uppercase letter
Number of samples often denoted by  or .
Access rows or columns via subscript or numpy notation:

 is the -th row,  is the th column
(Sometimes) ,  is the -th row or column depending on context

Access elements by double subscript  or  is the -th entry of the matrix
Examples

 - Real number

𝑛 𝑁

𝑋𝑖,: 𝑖 𝑋:,𝑗 𝑗

𝑋𝑖 𝐱𝑖 𝑖

𝑋𝑖,𝑗 𝑥𝑖,𝑗 𝑖, 𝑗

𝑋 ∈ ℝ𝑛×𝑑

[ 1.1343  6.2345 35.    ] 
[5 5 5] 

[1, 2, 30, 40] 
[31 42] 

Out[5]: list

Out[6]: numpy.ndarray

x = np.array([1.1343, 6.2345, 35])
print(x)
z = 5 * np.ones(3, dtype=int)
print(z)

a_list = [1, 2]
b_list = [30, 40]
c_list = a_list + b_list
print(c_list)
a = np.array(a_list)  # Create numpy array from Python list
b = np.array(b_list)
c = a + b
print(c)

type(a_list)

type(a)



 - Real number

 - Finite set
 - Bounded set

𝑋 = [ ]
1

4

2

5

3

6

𝑌 ∈ {0, 1,… ,𝐶}𝑘×𝑑

𝑈 ∈ [0, 1]𝑛×𝑑

In [7]:

Tensors
-D arrays

Examples
, single color image in PyTorch

, multiple color images in PyTorch
, single color image for matplotlib imshow

𝑛

𝑋 ∈ ℝ3×𝑚×𝑚

𝑋 ∈ ℝ𝑛×3×𝑚×𝑚

𝑋 ∈ ℝ𝑚×𝑚×3

[[ 0  1  2  3] 
 [ 4  5  6  7] 
 [ 8  9 10 11]] 
[[1.1343+2.1j 0.    +1.j  0.1   +3.5j] 
 [3.    +0.j  4.    +0.j  5.    +0.j ]] 
[[5 5 5] 
 [5 5 5] 
 [5 5 5]] 

X = np.arange(12).reshape(3,4)
print(X)
W = np.array([
    [1.1343 + 2.1j, 1j, 0.1 + 3.5j],
    [3, 4, 5],
])
print(W)
Z = 5 * np.ones((3, 3), dtype=int)
print(Z)
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Matrix transpose
Changes columns to rows and rows to columns
Denoted as 
For vectors , the transpose changes from a column vector to a row vector

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a
row or column vector per se.

𝐴𝑇

𝐯

𝐱 = ,










𝑥1

𝑥2

⋮
𝑥𝑑










𝐱𝑇 = = [ , ,… , ]










𝑥1

𝑥2

⋮
𝑥𝑑










𝑇

𝑥1 𝑥2 𝑥𝑑
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NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a
row or column vector per se.

Shape of image (height, width, channels): (427, 640, 3) 

[[0 1 2] 
 [3 4 5]] 
[[0 3] 
 [1 4] 
 [2 5]] 

from sklearn.datasets import load_sample_image
china = load_sample_image('china.jpg')
print('Shape of image (height, width, channels):', china.shape)
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(china);

A = np.arange(6).reshape(2,3)
print(A)
print(A.T)
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Matrix product
Let , , then the matrix product  is defined as:

where  (notice how inner dimension is collapsed.
(Show on board visually)

𝐴 ∈ ℝ𝑚×𝑛 𝐵 ∈ ℝ𝑛×𝑝 𝐶 = 𝐴𝐵

=𝑐𝑖,𝑗 ∑
𝑘∈{1,2,…,𝑛}

𝑎𝑖,𝑘𝑏𝑘,𝑗

𝐶 ∈ ℝ𝑚×𝑝
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A numpy vector [0 1 2 3 4] 
Transpose of numpy vector [0 1 2 3 4] 
A matrix with one column 
V shape:  (5, 1) 
[[0] 
 [1] 
 [2] 
 [3] 
 [4]] 

[[0 1] 
 [2 3] 
 [4 5]] 
[[0 1 2] 
 [3 4 5]] 
[[ 3.  4.  5.] 
 [ 9. 14. 19.] 
 [15. 24. 33.]] 
[[ 3  4  5] 
 [ 9 14 19] 
 [15 24 33]] 

v = np.arange(5)
print('A numpy vector', v)
print('Transpose of numpy vector', v.T)
print('A matrix with one column')
V = v.reshape(-1, 1)
print('V shape: ', V.shape)
print(V)

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
C = np.zeros((A.shape[0], B.shape[1]))
for i in range(C.shape[0]):
    for j in range(C.shape[1]):
        for k in range(A.shape[1]):
            C[i, j] += A[i, k] * B[k, j]
print(C)
print(np.matmul(A, B))



Notice triple loop, naively cubic complexity 

However, special linear algebra algorithms can do it 

Takeaway - Use numpy np.matmul  or @  operator for matrix
multiplication
( np.dot  also works for matrix multiplication but is different in PyTorch and is less explicit so I
suggest the two methods above for matrix multiplication)

𝑂( )𝑛3

𝑂( )𝑛2.803

Element-wise (Hadamard) product NOT equal to
matrix multiplication

Normal matrix mutiplication  is very different from element-wise (or more formally
Hadamard) multiplication, denoted , which in numpy is just the star *

𝐶 = 𝐴𝐵

𝐹 = 𝐴 ⊙ 𝐷
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[[0 1] 
 [2 3] 
 [4 5]] 
[[0 1 2] 
 [3 4 5]] 
Operation failed! Message below: 
operands could not be broadcast together with shapes (3,2) (2,3)  

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
try:
    A * B  # Fails since matrix shapes don't match and cannot broadcast
except ValueError as e:
    print('Operation failed! Message below:')
    print(e)
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Properties of matrix product
Distributive: 
Associative: 
NOT commutative, i.e.,  does NOT always hold
Transpose of multiplication (switch order and transpose of both):

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶

𝐴(𝐵𝐶) = (𝐴𝐵)𝐶

𝐴𝐵 = 𝐵𝐴

(𝐴𝐵 =)𝑇 𝐵𝑇𝐴𝑇

In [14]:

Properties of inner product or vector-vector
product

[[0 1] 
 [2 3] 
 [4 5]] 
[[ 0 30] 
 [10 40] 
 [20 50]] 
[[  0  30] 
 [ 20 120] 
 [ 80 250]] 

AB 
[[ 3  4  5] 
 [ 9 14 19] 
 [15 24 33]] 
BA 
[[10 13] 
 [28 40]] 
(AB)^T 
[[ 3  9 15] 
 [ 4 14 24] 
 [ 5 19 33]] 
B^T A^T 
[[ 3  9 15] 
 [ 4 14 24] 
 [ 5 19 33]] 

print(A)
D = 10*B.T
print(D)
F = A * D  # Element-wise / Hadamard product
print(F)

print('AB')
print(np.matmul(A, B))
print('BA')
print(np.matmul(B, A))
print('(AB)^T')
print(np.matmul(A, B).T)
print('B^T A^T')
print(np.matmul(B.T, A.T))



p
Inner product or vector-vector multiplication produces scalar:

Also denoted as:

Can be executed via np.dot  or np.matmul

𝐲 = ( 𝐲 = 𝐱𝐱𝑇 𝐱𝑇 )𝑇 𝐲𝑇

⟨𝐱, 𝐲⟩ = 𝐲𝐱𝑇
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Identity matrix keeps vectors unchanged
Multiplying by the identity does not change vector (generalizing the concept of the scalar 1)
Formally, , and 
Structure is ones on the diagonal, zero everywhere else:
np.eye  function to create identity

∈𝐼𝑛 ℝ
𝑛×𝑛 ∀𝐱 ∈ , 𝐱 = 𝐱ℝ

𝑛 𝐼𝑛
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Matrix inverse times the original matrix is the
identity

The inverse of square matrix  is denoted as  and defined as:

The "right" inverse is similar and is equal to the left inverse:

Generalizes the concept of inverse  and 
Does NOT always exist, similar to how the inverse of  only exists if 

𝐴 ∈ 𝕟 × 𝕟 𝐴−1

𝐴 = 𝐼𝐴−1

𝐴 = 𝐼𝐴−1

𝑥 1
𝑥

𝑥 𝑥 ≠ 0

[0 1 2] 
[11 22 33] 

Out[15]: 88

[[1. 0. 0.] 
 [0. 1. 0.] 
 [0. 0. 1.]] 
[1.45901765 0.6176544  0.10913208] 
[1.45901765 0.6176544  0.10913208] 

# Inner product
a = np.arange(3)
print(a)
b = np.array([11, 22, 33])
print(b)
np.dot(a, b)

I3 = np.eye(3)
print(I3)
x = np.random.randn(3)
print(x)
print(np.matmul(I3, x))
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Linear set of equations can be compactly
represented as matrix equation

Example:

Solution is 
More general example:

is equivalent to:

where ,  and .
If matrix inverse exists, then solution is

.

2𝑥

4𝑥

+

+

3𝑦

9𝑦

=

=

6

15.

𝑥 = , 𝑦 = 13

2

+ +𝑎1,1𝑥1 𝑎1,2𝑥2 𝑎1,3𝑥3

+ +𝑎2,1𝑥1 𝑎2,2𝑥2 𝑎2,3𝑥3

+ +𝑎3,1𝑥1 𝑎3,2𝑥2 𝑎3,3𝑥3

= 𝑏1

= 𝑏2

= 𝑏3

𝐴𝐱 = 𝐛

𝐴 ∈ ℝ3,3 𝐱 ∈ ℝ3 𝐛 ∈ ℝ3

𝐱 = 𝑏𝐴−1

Singular matrices are similar to zeros
Informally, singular matrices are matrices that do not have an inverse (similar to the idea that 0
does not have an inverse)
Consider the 1D equation 

Usually we can solve for  by multiplying both sides by 
But what if ?
What are the solutions to the equation?

𝑎𝑥 = 𝑏

𝑥 1/𝑎

𝑎 = 0

[[100.  50.] 
 [ 20. 100.]] 
[[ 0.01111111 -0.00555556] 
 [-0.00222222  0.01111111]] 
A^{-1} A =  
[[1.00000000e+00 0.00000000e+00] 
 [2.77555756e-17 1.00000000e+00]] 
A A^{-1} =  
[[1.00000000e+00 0.00000000e+00] 
 [2.77555756e-17 1.00000000e+00]] 

A = 100 * np.array([[1, 0.5], [0.2, 1]])
print(A)
Ainv = np.linalg.inv(A)
print(Ainv)
print('A^{-1} A = ')
print(np.matmul(Ainv, A))
print('A A^{-1} = ')
print(np.matmul(A, Ainv))



Called "singular" because a random matrix is unlikely to be singular just like choosing a
random number is unlikely to be 0.
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A =  
[[0 0] 
 [0 0]] 
Singular matrix 
 
A =  
[[1. 0. 0.] 
 [0. 1. 0.] 
 [0. 0. 1.]] 
Not singular! 
 
A =  
[[1 1] 
 [1 1]] 
Singular matrix 
 
A =  
[[ 1 10] 
 [ 1 10]] 
Singular matrix 
 
A =  
[[ 2 20] 
 [ 4 40]] 
Singular matrix 
 
A =  
[[ 2 20] 
 [40  4]] 
Not singular! 
 

from numpy.linalg import LinAlgError
def try_inv(A):
    print('A = ')
    print(np.array(A))
    try: 
        np.linalg.inv(A)
    except LinAlgError as e:
        print(e)
    else:
        print('Not singular!')
    print()
        
try_inv([[0, 0], [0, 0]])
try_inv(np.eye(3))
try_inv([[1, 1], [1, 1]])
try_inv([[1, 10], [1, 10]])
try_inv([[2, 20], [4, 40]])
try_inv([[2, 20], [40, 4]])



In [19]:

A =  
[[ 0.62116151 -1.01047326] 
 [ 0.9207096   0.13609464]] 
Not singular! 
 
A =  
[[0.10241761 0.05638955] 
 [0.6554859  0.81492455]] 
Not singular! 
 
A =  
[[-0.62152324  0.43003518] 
 [-0.06451688 -0.10078375]] 
Not singular! 
 
A =  
[[-0.06023321  1.72412948] 
 [ 1.01745313  2.00707215]] 
Not singular! 
 
A =  
[[ 0.15428838  0.01666077] 
 [-0.06106018  1.63095398]] 
Not singular! 
 
A =  
[[-0.65684713 -0.16658363] 
 [-0.55606557 -0.00458845]] 
Not singular! 
 
A =  
[[-2.04915067 -0.69560613] 
 [ 0.02569157  0.6574612 ]] 
Not singular! 
 
A =  
[[ 0.13000679 -1.43767639] 
 [ 1.45339701  0.58621667]] 
Not singular! 
 
A =  
[[ 0.37263979  0.51563468] 
 [-1.06825911 -0.92117196]] 
Not singular! 
 
A =  
[[ 2.66511491 -1.02085393] 
 [ 1.40486011  0.9248407 ]] 
Not singular! 
 

# Random matrix is very unlikely to be 0
for j in range(10):
    try_inv(np.random.randn(2, 2))



Norms: The "size" of a vector or matrix
Informally, a generalization of the absolute value of a scalar
Formally, a norm is an function  that has the following three properties:

 (zero point)
 (Triangle inequality)

 (absolutely homogenous)
Examples

Absolute value of scalars
-norm (also denoted -norm)

(Discussion) What does this represent when  (for simplicity you can assume )?
When , we often merely denote as .

What about when ?
What about when  (or more formally the limit as )?

𝑓

𝑓(𝐱) = 0 ⇒ 𝐱 = 0
𝑓(𝐱 + 𝐲) ≤ 𝑓(𝐱) + 𝑓(𝐲)
∀𝛼 ∈ ℝ, 𝑓(𝛼𝐱) = |𝛼|𝑓(𝐱)

𝑝 ℓ𝑝

‖𝐱 =‖𝑝 ( | )∑
𝑖=1

𝑑

𝑥𝑖|
𝑝

1

𝑝

𝑝 = 2 𝑑 = 2

𝑝 = 2 ‖𝐱‖

𝑝 = 1

𝑝 = ∞ 𝑝 → ∞
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Vectors that have the same norm form a "ball" that isn't
necessarily circular

In [21]:

1.4142135623730951 
2.0 
1.0 

x = np.array([1, 1])
print(np.linalg.norm(x, ord=2))
print(np.linalg.norm(x, ord=1))
print(np.linalg.norm(x, ord=np.inf))

rng = np.random.RandomState(0)
X = rng.randn(1000, 2)
 
p_vals = [1, 1.5, 2, 4, np.inf]
fig, axes = plt.subplots(1, len(p_vals), figsize=(len(p_vals)*4, 3))
 
for p, ax in zip(p_vals, axes):
    # Normalize them to have the unit norm
    Z = (X.T / np.linalg.norm(X, ord=p, axis=1)).T
    ax.scatter(Z[:, 0], Z[:, 1])
    ax.axis('equal')
    ax.set_title('Unit Norm Ball for $p$=%g' % p)



Squared  norm is quite common since it simplifies to a
simple summation

Additionally, this can be computed as 
Informally, this is analogous to taking the square of a scalar number

𝐿2

‖𝐱 = = | =‖22






( | )∑
𝑖=1

𝑑

𝑥𝑖|
2

1

2







2

∑
𝑖=1

𝑑

𝑥𝑖|
2

∑
𝑖=1

𝑑

𝑥2𝑖

‖𝐱 = 𝐱‖22 𝐱𝑇
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Orthogonal vectors
Orthogonal vectors are vectors such that 
The dot product between vectors can be written in terms of norms and the cosine of the angle:

(Discussion) Suppose  and  are non-zero vectors, what must  be if the vectors are
orthogonal?

𝐲 = 0𝐱𝑇

𝐲 = ‖𝐱 ‖𝐲 cos 𝜃𝐱𝑇 ‖2 ‖2
𝐱 𝐲 𝜃

In [23]:

Special matrices: Orthogonal matrices
Informally, an orthogonal matrix only rotates (or reflects) vectors around the origin (zero point),
but does not change the size of the vectors.
Informally, almost analagous to a 1 or -1 for matrices but more general
A square matrix such that 
Or, equivalently 
Or, equivalently:

Every column (or row) is orthogonal to every other column (or row)

𝑄 = 𝑄 = 𝐼𝑄𝑇 𝑄𝑇

=𝑄−1 𝑄𝑇

14.0 
14 

0 
[ 6.123234e-17 -1.000000e+00] 
[1.000000e+00 6.123234e-17] 
0.0 

x = np.arange(4)
print(np.linalg.norm(x, ord=2)**2)
print(np.dot(x, x))

print(np.matmul([0, 1], [1, 0]))
theta = np.pi/2
x = np.array([np.cos(theta), -np.sin(theta)])
y = np.array([np.sin(theta), np.cos(theta)])
print(x)
print(y)
print(np.dot(x, y))



Every column (or row) has unit -norm, i.e., ℓ2 ‖ = ‖ = 1𝑄𝑖,:‖2 𝑄:,𝑗‖2
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Other special matrices: Symmetric, Triangular,
Diagonal

Symmetric matrices are symmetric around the diagonal; formally, 
Triangular matrices only have non-zeros in the upper or lower triangular part of the matrix
Diagonal matrices only have non-zeros along the diagonal of a matrix

𝐴 = 𝐴𝑇

Identity matrix 
[[1. 0.] 
 [0. 1.]] 
True 
Reflection matrix 
[[ 1  0] 
 [ 0 -1]] 
True 
Rotation matrix 
[[ 0.5       -0.8660254] 
 [ 0.8660254  0.5      ]] 
True 

print('Identity matrix')
Q = np.eye(2) # Identity
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
 
print('Reflection matrix')
Q = np.array([[1, 0], [0, -1]]) # Reflection
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
 
print('Rotation matrix')
theta = np.pi/3
Q = np.array([
    [np.cos(theta), -np.sin(theta)],
    [np.sin(theta), np.cos(theta)]
])
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
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Multiplying a matrix by a diagonal matrix scales the
columns or rows

Right multiplication scales rows
Left multiplication scales columns

Symmetric 
[[ 2  8 14 20 26] 
 [ 8 14 20 26 32] 
 [14 20 26 32 38] 
 [20 26 32 38 44] 
 [26 32 38 44 50]] 
Upper triangular 
[[ 1  2  3  4  5] 
 [ 0  7  8  9 10] 
 [ 0  0 13 14 15] 
 [ 0  0  0 19 20] 
 [ 0  0  0  0 25]] 
Lower triangular 
[[ 1  0  0  0  0] 
 [ 6  7  0  0  0] 
 [11 12 13  0  0] 
 [16 17 18 19  0] 
 [21 22 23 24 25]] 
Diagonal (both upper and lower triangular) 
[[1 0 0 0 0] 
 [0 2 0 0 0] 
 [0 0 3 0 0] 
 [0 0 0 4 0] 
 [0 0 0 0 5]] 

A = np.arange(25).reshape(5, 5)+1
print('Symmetric')
print(A + A.T)
print('Upper triangular')
print(np.triu(A))
print('Lower triangular')
print(np.tril(A))
print('Diagonal (both upper and lower triangular)')
print(np.diag(np.arange(5) + 1))
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Inverse of diagonal matrix is formed merely by taking
inverse of diagonal elements

Most operations on diagonal matrices are just the scalar versions of their entries

[[ 0  1  2  3] 
 [ 4  5  6  7] 
 [ 8  9 10 11] 
 [12 13 14 15]] 
[[   1    0    0    0] 
 [   0   10    0    0] 
 [   0    0  100    0] 
 [   0    0    0 1000]] 
AD 
[[    0    10   200  3000] 
 [    4    50   600  7000] 
 [    8    90  1000 11000] 
 [   12   130  1400 15000]] 
AD (via numpy * and broadcasting) 
[[    0    10   200  3000] 
 [    4    50   600  7000] 
 [    8    90  1000 11000] 
 [   12   130  1400 15000]] 
DA 
[[    0     1     2     3] 
 [   40    50    60    70] 
 [  800   900  1000  1100] 
 [12000 13000 14000 15000]] 
DA (via numpy * and broadcasting) 
[[    0     1     2     3] 
 [   40    50    60    70] 
 [  800   900  1000  1100] 
 [12000 13000 14000 15000]] 

A = np.arange(16).reshape(4, 4)
print(A)
D = np.diag(10**(np.arange(4)))
diag_vec = np.diag(D)
print(D)
print('AD')
print(np.matmul(A, D))
print('AD (via numpy * and broadcasting)')
print(A * diag_vec)
print('DA')
print(np.matmul(D, A))
print('DA (via numpy * and broadcasting)')
print((A.T * diag_vec).T)
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Motivation: Matrix decompositions allow us to
understand and manipulate matrices both
theoretically and practically

Analagous to prime factorization of an integer, e.g., 
Allows us to determine whether things are divisible by other integers

Analagous to representing a signal in the time versus frequency domain
Both domains represent the same object but are useful for different computations and
derivations

12 = 2 × 2 × 3

Eigendecomposition
For real symmetric matrices, the eigendecomposition is:

where  is an orthogonal matrix and  is a diagonal matrix.
Often in notation, it is assumed that the diagonal of , denoted  is ordered by decreasing
values, i.e., .

 are known as the eigenvalues and  is known as the eigenvector matrix

𝐴 = 𝑄Λ𝑄𝑇

𝑄 Λ

Λ 𝜆

≥ ,≥ ⋯ ≥𝜆1 𝜆2 𝜆𝑑
𝜆 𝑄

[[1 0 0 0 0] 
 [0 2 0 0 0] 
 [0 0 3 0 0] 
 [0 0 0 4 0] 
 [0 0 0 0 5]] 
diag_A [1 2 3 4 5] 
diag_A_inv [1.         0.5        0.33333333 0.25       0.2       ] 
[[1.         0.         0.         0.         0.        ] 
 [0.         0.5        0.         0.         0.        ] 
 [0.         0.         0.33333333 0.         0.        ] 
 [0.         0.         0.         0.25       0.        ] 
 [0.         0.         0.         0.         0.2       ]] 
[[ 1.          0.          0.          0.          0.        ] 
 [ 0.          0.5         0.          0.          0.        ] 
 [ 0.          0.          0.33333333  0.          0.        ] 
 [-0.         -0.         -0.          0.25       -0.        ] 
 [ 0.          0.          0.          0.          0.2       ]] 

A = np.diag(np.arange(5)+1)
print(A)
diag_A = np.diag(A)
print('diag_A', diag_A)
diag_A_inv = 1 / diag_A
print('diag_A_inv', diag_A_inv)
Ainv = np.diag(diag_A_inv)
print(Ainv)
Ainv_full = np.linalg.inv(A)
print(Ainv_full)



In [28]:

Simple properties based on eigendecomposition
 is easy to compute
Easy to solve equation 

Powers of matrix is easy to compute .
The matrix is singular if and only if there is a zero in 

𝐴−1

𝐴𝐱 = 𝐛

= 𝐴𝐴𝐴𝐴3

𝜆

Positive definite (or semidefinite) matrices have positive (or
possibly 0) eigenvalues

 is positive definite (PD) if and only if 
Positive semi-definite (PSD) is where there could be zero eigenvalues.
Informally, a PD matrix is like  in a quadratic formula, 

Scalar quadratic: 
Vector quadratic: 

 is a generalization of  in the scalar equation
If not positive definite, there may be saddle points.

𝐴 ∀𝐱, 𝐴𝐱 > 0𝐱𝑇

𝑎 > 0 𝑎𝑥2

𝑎 + 𝑏𝑥 + 𝑐𝑥2

𝐴𝐱 + 𝐱 + 𝑐𝐱𝑇 𝐛𝑇

𝐴 𝑎

[[ 6.54930093  0.          0.          0.        ] 
 [ 0.         -3.728219    0.          0.        ] 
 [ 0.          0.          0.45077461  0.        ] 
 [ 0.          0.          0.         -0.7428718 ]] 
[[ 0.77115168  0.36010163  0.51908231 -0.07877468] 
 [ 0.25392564 -0.75129904  0.0518548  -0.60694531] 
 [ 0.31251286  0.37021589 -0.78092889 -0.394241  ] 
 [ 0.49313545 -0.41087317 -0.34353267  0.68555523]] 
Are all entries equal up to machine precision? 
Yes 

rng = np.random.RandomState(0)
B = rng.randn(4,4)
A = B + B.T # Make symmetric
lam, Q = np.linalg.eig(A)
print(np.diag(lam))
print(Q)
A_reconstructed = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')



In [29]:

Singular value decomposition of any matrix (The
decomposition to end all decompositions)

For any matrix  (even non-square), the singular value decomposition is:𝐴 ∈ ℝ𝑚×𝑛

𝐴 = 𝑈Σ𝑉 𝑇

Out[29]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fc77da1f1d0>

# Get random orthogonal matrix Q
rng = np.random.RandomState(0)
Q, _ = np.linalg.qr(rng.randn(2, 2))
# Create positive definite matrix
lam = np.array([1, 1])  # Positive definite
#lam = np.array([1, 1])  # Negative definite
#lam = np.array([-1, 1])  # Not positive or negative definite
 
# Construct a matrix from Q and lambda
A = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
 
# Plot 3D
from mpl_toolkits.mplot3d import Axes3D
v = np.linspace(-10, 10, num=20)
xx, yy = np.meshgrid(v, v)
X = np.array([xx.ravel(), yy.ravel()]).T
f = np.sum(np.matmul(A, X.T) * X.T, axis=0)
ff = f.reshape(xx.shape)
 
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(xx, yy, ff, cmap='viridis')



where  and  are orthogonal matrices and  is a diagonal
(though not necessarily square) matrix.
Often in notation, it is assumed that the diagonal of , denoted  is ordered by decreasing
values, i.e., .

 are known as the singular values and  and  are known as the left singular vectors and
the right singular vectors respectively.

𝑈 ∈ ℝ𝑚×𝑚 𝑉 ∈ ℝ𝑛×𝑛 Σ ∈ ℝ𝑚×𝑛

Σ 𝜎

≥ ,≥ ⋯ ≥𝜎1 𝜎2 𝜎𝑑
𝜎 𝑈 𝑉

In [30]:

Rank  is the number of linearly independent
columns

Consider an example of two equations with two unknowns (Is there a unique solution?):

Similar to a matrix , notice "redundancy"

SVD -> Rank = Number of non-zero singular values
If ,  is not singular if and only if .
Simplest case is rank 1 matrix:  (show on board)

Notice difference from inner product, denoted as 
 is also known as the outer product of two vectors

rank(𝐴)

2𝑥 + 3𝑦 = 0

4𝑥 + 6𝑦 = 1

𝐴 = [ ]
2

4

3

6

𝐴 ∈ ℝ𝑑×𝑑 𝐴 rank(𝐴) = 𝑑

𝐱𝐲𝑇

𝐲𝐱𝑇

𝐱𝐲𝑇

A (2, 3) 
[[0 1 2] 
 [3 4 5]] 
U (2, 2) 
Sigma (2, 3) 
Vt (3, 3) 
Are all entries equal up to machine precision? 
Yes 

rng = np.random.RandomState(0)
A = np.arange(6).reshape(2, 3)
print('A', A.shape)
print(A)
 
# Note returns V^T (i.e. transpose) rather than V
U, s, Vt = np.linalg.svd(A, full_matrices=True)
 
# Convert singular vector to matrix
Sigma = np.zeros_like(A, dtype=float)
Sigma[:2, :2] = np.diag(s)
 
print('U', U.shape)
print('Sigma', Sigma.shape)
print('Vt', Vt.shape)
 
A_reconstructed = np.matmul(U, np.matmul(Sigma, Vt))
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')



Matrix multiplication can be seen as a sum of rank 1
matrices

, where  is the -th column of  and  is the -th row of 𝐴𝐵 = ∑𝑑𝑖=1 𝐴:,𝑖𝐵𝑖,: 𝐴:,𝑖 𝑖 𝐴 𝐵𝑖,: 𝑖 𝐵

In [31]:

SVD provides powerful interpretation of matrix as sum of
rank one matrices

SVD can be used to solve the following matrix approximation problem:

where  is the Frobenius norm, or just like the -norm but consider the matrix as a long
vector.

Example:

𝐴 = 𝑈Σ =𝑉 𝑇 ∑
𝑖=1

rank(𝐴)

𝜎𝑖𝐮𝑖𝐯
𝑇
𝑖

‖𝐴 − 𝐵 s.t. rank(𝐵) ≤ 𝑟min
𝐵

‖𝐹

‖𝐴‖𝐹 ℓ2

‖𝐴 = = ‖[𝑎, 𝑏, 𝑐, 𝑑]‖𝐹 [ ]
‖

‖
‖
𝑎

𝑐

𝑏

𝑑

‖

‖
‖
𝐹

‖2

[[0 1 2] 
 [3 4 5]] 
[[ 0 -1] 
 [-2 -3] 
 [-4 -5]] 
AB sum formula 
[[-10. -13.] 
 [-28. -40.]] 
AB standard 
[[-10 -13] 
 [-28 -40]] 

A = np.arange(6).reshape(2, 3)
print(A)
B = -np.arange(6).reshape(3, 2)
print(B)
 
AB_sum = np.zeros((2, 2))
for acol, brow in zip(A.T, B):
    AB_sum += np.outer(acol, brow)
    
print('AB sum formula')
print(AB_sum)
 
print('AB standard')
AB = np.matmul(A, B)
print(AB)



In [32]:

In [33]:

Usually the most important information is in the first few
singular values

china matrix (427, 640) 

from sklearn.datasets import load_sample_image
china = load_sample_image('china.jpg')
gray_china = china[:,:,0]/255.0
print('china matrix', gray_china.shape)
#print(gray_china)
 
U, s, Vt = np.linalg.svd(gray_china)
Sigma = np.zeros_like(gray_china, dtype=float)
Sigma[:427, :427] = np.diag(s)

max_rank = np.min(gray_china.shape)
rank_arr = [1, 2, 4, 8, 16, 32, 64, 128, max_rank]
fig, axes = plt.subplots(3, 3, figsize=(len(rank_arr)*2, 3*4))
for r, ax in zip(rank_arr, axes.ravel()):
    china_approx = np.matmul(U[:, :r], np.matmul(Sigma[:r,:r], Vt[:r, :]))
    compression = r/max_rank
    ax.imshow(china_approx, cmap='gray')
    ax.set_title('Rank=%d, Compression=%.1f%%' % (r, compression*100))



In [34]:

Determinant  (of square matrix) is the
product of eigenvalues 

Absolute value of determinant roughly measures how much the matrix expands or contracts
space
Example: if determinant is 0, then compresses vectors onto a smaller subspace
Example: if determinant is 1, then volume is preserved (how is this different than orthogonal
matrix?)

det(𝐴)
𝜆

det(𝐴) = |𝐴| =∏
𝑖=1

𝑑

𝜆𝑖

Out[34]: [<matplotlib.lines.Line2D at 0x7fc77ef91898>]

# The most important components are 
plt.plot(s,'.')



In [35]:

Trace  operation
Trace is just the sum of the diagonal elements of a matrix

Most useful property is rotational equivalence:

In particular, (even if different dimensions)

Tr(𝐴)

Tr(𝐴) =∑
𝑖=1

𝑑

𝑎𝑖,𝑖

Tr(𝐴𝐵𝐶) = Tr(𝐶𝐴𝐵) = Tr(𝐵𝐶𝐴)

Tr(𝐴𝐵) = Tr(𝐵𝐴)

In [36]:

A 
[[0 1] 
 [2 3]] 
prod of eigenvalues 
-2.0 
det(A) 
-2.0 

AB 
[[ 5 14] 
 [14 50]] 
Tr(AB) 
55 
Tr(BA) 
55 
Tr(A^T B^T) 
55 
Tr(B^T A^T) 
55 

A = np.arange(4).reshape(2,2)
print('A')
print(A)
print('prod of eigenvalues')
lam, Q = np.linalg.eig(A)
print(np.prod(lam))
print('det(A)')
print(np.linalg.det(A))

A = np.arange(2*3).reshape(2,3)
B = A.copy().T
print('AB')
print(np.matmul(A, B))
print('Tr(AB)')
print(np.trace(np.matmul(A, B)))
print('Tr(BA)')
print(np.trace(np.matmul(B, A)))
print('Tr(A^T B^T)')
print(np.trace(np.matmul(A.T, B.T)))
print('Tr(B^T A^T)')
print(np.trace(np.matmul(B.T, A.T)))




