Brief Review of Linear Algebra

Content and structure mainly from: http://www.deeplearningbook.org/contents/linear algebra.html (http://www.deeplearningbook.org/contents/linear algebra.html).

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
```


Scalars

- Single number
- Denoted as lowercase letter
- Examples
- $x \in \mathbb{R}$ - Real number
- $y \in\{0,1, \ldots, C\}$ - Finite set
- $u \in[0,1]$ - Bounded set

In [2]:

```
x = 1.1343
print(x)
z = int(-5)
print(z)
```

1.1343
-5

Vectors

- Array of numbers
- In notation, we usually consider vectors to be "column vectors"
- Denoted as lowercase letter (often bolded)
- Dimension is often denoted by d, D, or p.
- Access elements via subscript, e.g., x_{i} is the i-th element
- Examples
- $\mathbf{x} \in \mathbb{R}^{d}$
- $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{d}\end{array}\right]$
- $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]^{T}$
- $\mathbf{z}=\left[\sqrt{x_{1}}, \sqrt{x_{2}}, \ldots, \sqrt{x_{d}}\right]^{T}$
- $\mathbf{y} \in\{0,1, \ldots, C\}^{d}$ - Finite set
- $\mathbf{u} \in[0,1]^{d}$ - Bounded set

In [3]:

```
x = np.array([1.1343, 6.2345, 35])
print(x)
z = 5 * np.ones(3, dtype=int)
print(z)
```

$\left[\begin{array}{lll}1.1343 & 6.2345 & 35 .\end{array}\right]$
[5 5 5]

Note: The operator + does different things on numpy arrays vs Python lists

- For lists, Python concatenates the lists
- For numpy arrays, numpy performs an element-wise addition
- Similarly, for other binary operators such as - , + , * , and /

In [4]: a_list $=[1,2]$
b_list $=[30,40]$
c_list $=$ a_list + b_list
print(c_list)
a = np.array(a_list) \# Create numpy array from Python list
$\mathrm{b}=\mathrm{np}$.array(b_list)
$c=a+b$
print(c)
$[1,2,30,40]$
[3142]

In [5]:

```
type(a_list)
```

Out[5]: list

In [6]:

```
type(a)
```

Out[6]: numpy.ndarray

Matrices

- 2D array of numbers
- Denoted as uppercase letter
- Number of samples often denoted by n or N.
- Access rows or columns via subscript or numpy notation:
- $X_{i, \text { : }}$ is the i-th row, $X_{:, j}$ is the j th column
- (Sometimes) X_{i}, \mathbf{x}_{i} is the i-th row or column depending on context
- Access elements by double subscript $X_{i, j}$ or $x_{i, j}$ is the i, j-th entry of the matrix
- Examples
- $X \in \mathbb{R}^{n \times d}$ - Real number
- $X=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ - Real number
- $Y \in\{0,1, \ldots, C\}^{k \times d}$ - Finite set
- $U \in[0,1]^{n \times d}-$ Bounded set

In [7]:

```
x = np.arange(12).reshape(3,4)
print(X)
W = np.array([
    [1.1343 + 2.1j, 1j, 0.1 + 3.5j],
    [3, 4, 5],
])
print(W)
Z = 5 * np.ones((3, 3), dtype=int)
print(Z)
```

[[$\left.\begin{array}{lllll}0 & 1 & 2 & 3\end{array}\right]$			
[405067$]$			
[$\left.\begin{array}{lllll}8 & 9 & 10 & 11]\end{array}\right]$			
[[1.1343+2.1j 0.	+1.j	0.1	+3.5j]
[3. +0.j 4.	+0.j	5.	+0.j]]
[$\left.\begin{array}{lll}5 & 5 & 5\end{array}\right]$			
$\left[\begin{array}{lll}5 & 5 & 5\end{array}\right]$			
[5 5 5]]			

Tensors

- n-D arrays
- Examples
- $X \in \mathbb{R}^{3 \times m \times m}$, single color image in PyTorch
- $X \in \mathbb{R}^{n \times 3 \times m \times m}$, multiple color images in PyTorch
- $X \in \mathbb{R}^{m \times m \times 3}$, single color image for matplotlib imshow

```
from sklearn.datasets import load_sample_image
china = load sample image('china.jpg')
print('Shape of image (height, width, channels):', china.shape)
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(china);
```

Shape of image (height, width, channels): (427, 640, 3)

Matrix transpose

- Changes columns to rows and rows to columns
- Denoted as A^{T}
- For vectors \mathbf{v}, the transpose changes from a column vector to a row vector

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right], \quad \mathbf{x}^{T}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]^{T}=\left[x_{1}, x_{2}, \ldots, x_{d}\right]
$$

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a row or column vector per se.

In [9]:

```
A = np.arange(6).reshape(2,3)
print(A)
print(A.T)
```

[$\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]$
[$\left.\begin{array}{lll}3 & 4 & 5\end{array}\right]$
[$\left.\begin{array}{ll}0 & 3\end{array}\right]$
$\left[\begin{array}{ll}1 & 4\end{array}\right]$
[2 5]]

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a row or column vector per se.

In [10]:

```
v = np.arange(5)
print('A numpy vector', v)
print('Transpose of numpy vector', v.T)
print('A matrix with one column')
V = v.reshape(-1, 1)
print('V shape: ', V.shape)
print(V)
```

```
A numpy vector [[0}01122 3 4 4
Transpose of numpy vector [[0 1 1 2 2 3 4 4]
A matrix with one column
V shape: (5, 1)
[ [0]
    [1]
    [2]
    [3]
    [4]]
```


Matrix product

- Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, then the matrix product $C=A B$ is defined as:

$$
c_{i, j}=\sum_{k \in\{1,2, \ldots, n\}} a_{i, k} b_{k, j}
$$

where $C \in \mathbb{R}^{m \times p}$ (notice how inner dimension is collapsed.

- (Show on board visually)

In [11]: $A=n p . a r a n g e(6) . r e s h a p e(3,2)$

```
print(A)
```

$B=n p$. arange(6).reshape(2, 3)
print(B)
$\mathrm{C}=\mathrm{np} . \operatorname{zeros}((\mathrm{A}$. shape[0], B.shape[1]))
for i in range(C.shape[0]):
for j in range(C.shape[1]):
for k in range(A.shape[1]):
$C[i, j]+=A[i, k] * B[k, j]$
print(C)
print(np.matmul(A, B))
[$\left[\begin{array}{ll}0 & 1\end{array}\right]$
$\left[\begin{array}{ll}2 & 3\end{array}\right]$
[4 5 $]$]
[$\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$
[3 4 4 5]]
[$\left[\begin{array}{ccc}{[3 .} & 4 . & 5 .\end{array}\right]$
[9. 14. 19.]
[15. 24. 33.]]
[$\left[\begin{array}{lll}{[3} & 4 & 5\end{array}\right]$
[9 14 19]
[15 24 33]]

Notice triple loop, naively cubic complexity $O\left(n^{3}\right)$

However, special linear algebra algorithms can do it $O\left(n^{2.803}\right)$

Takeaway - Use numpy np.matmul or @ operator for matrix multiplication

(np.dot also works for matrix multiplication but is different in PyTorch and is less explicit so I suggest the two methods above for matrix multiplication)

Element-wise (Hadamard) product NOT equal to matrix multiplication

- Normal matrix mutiplication $C=A B$ is very different from element-wise (or more formally Hadamard) multiplication, denoted $F=A \odot D$, which in numpy is just the star *

In [12]:

```
A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
try:
    A * B # Fails since matrix shapes don't match and cannot broadcast
except ValueError as e:
    print('Operation failed! Message below:')
    print(e)
```

[$\left[\begin{array}{ll}0 & 1\end{array}\right]$
$\left[\begin{array}{ll}2 & 3\end{array}\right]$
[4 5 5$]$
[$\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$
[3 $\left.4 \begin{array}{lll}3 & 5\end{array}\right]$
Operation failed! Message below:
operands could not be broadcast together with shapes (3,2) (2,3)

```
print(A)
D = 10*B.T
print(D)
F = A * D # Element-wise / Hadamard product
print(F)
```

[$\left[\begin{array}{ll}0 & 1\end{array}\right]$
$\left[\begin{array}{ll}2 & 3\end{array}\right]$
[4 5]]
[$\left[\begin{array}{lll}{[} & 0 & 30\end{array}\right]$
[10 40]
[20 50]]
[$\left[\begin{array}{ccc}{[} & 0 & 30\end{array}\right]$
[20 120]
[80 250]]

Properties of matrix product

- Distributive: $A(B+C)=A B+A C$
- Associative: $A(B C)=(A B) C$
- NOT commutative, i.e., $A B=B A$ does NOT always hold
- Transpose of multiplication (switch order and transpose of both):

$$
(A B)^{T}=B^{T} A^{T}
$$

In [14]:

```
print('AB')
print(np.matmul(A, B))
print('BA')
print(np.matmul(B, A))
print('(AB)^T')
print(np.matmul(A, B).T)
print('B^T A^T')
print(np.matmul(B.T, A.T))
```

```
AB
[[[\begin{array}{llll}{[3}&{4}&{5}\end{array}]
        [ ( 9 14 19]
        [l[15 24 33]]
BA
[[\begin{array}{lll}{10}&{13}\end{array}]
        [28 40]]
(AB)^T
[[\begin{array}{llll}{[3}&{9}&{15}\end{array}]
    [ 4 14 24]
    [ 5 19 33]]
B^T A^T
[[[\begin{array}{llll}{3}&{9}&{15}\end{array}]
    [ 4 14 24]
    [ [ 5 19 33]]
```


Properties of inner product or vector-vector product

- Inner product or vector-vector multiplication produces scalar:

$$
\mathbf{x}^{T} \mathbf{y}=\left(\mathbf{x}^{T} \mathbf{y}\right)^{T}=\mathbf{y}^{T} \mathbf{x}
$$

Also denoted as:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}
$$

Can be executed via np. dot or np.matmul

In [15]:

```
# Inner product
a = np.arange(3)
print(a)
b = np.array([11, 22, 33])
print(b)
np.dot(a, b)
```

[$\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]$
$\left[\begin{array}{lll}11 & 22 & 33\end{array}\right]$

Out[15]: 88

Identity matrix keeps vectors unchanged

- Multiplying by the identity does not change vector (generalizing the concept of the scalar 1)
- Formally, $I_{n} \in \mathbb{R}^{n \times n}$, and $\forall \mathbf{x} \in \mathbb{R}^{n}, I_{n} \mathbf{x}=\mathbf{x}$
- Structure is ones on the diagonal, zero everywhere else:
- np. eye function to create identity

In [16]:

```
I3 = np.eye(3)
print(I3)
x = np.random.randn(3)
print(x)
print(np.matmul(I3, x))
```

[[1. 1.0 .0.$]$
$\left[\begin{array}{lll}0 . & 1 . & 0 .\end{array}\right]$
[0. 0. 1.]]
[1.45901765 $0.6176544 \quad 0.10913208$]
$\left[\begin{array}{llll}1.45901765 & 0.6176544 & 0.10913208\end{array}\right]$

Matrix inverse times the original matrix is the identity

- The inverse of square matrix $A \in \mathbb{\infty} \times \mathfrak{\infty}$ is denoted as A^{-1} and defined as:

$$
A^{-1} A=I
$$

- The "right" inverse is similar and is equal to the left inverse:

$$
A A^{-1}=I
$$

- Generalizes the concept of inverse x and $\frac{1}{x}$
- Does NOT always exist, similar to how the inverse of x only exists if $x \neq 0$

```
A = 100 * np.array([[1, 0.5], [0.2, 1]])
print(A)
Ainv = np.linalg.inv(A)
print(Ainv)
print('A^{-1} A = ')
print(np.matmul(Ainv, A))
print('A A^{-1} = ')
print(np.matmul(A, Ainv))
```

```
[[ 100. 50.]
    [ 20. 100.]]
[[ 0.01111111 -0.00555556]
    [-0.00222222 0.01111111]]
A^{-1} A =
[[1.00000000e+00 0.00000000e+00]
    [2.77555756e-17 1.00000000e+00]]
A A^{-1} =
[[1.00000000e+00 0.00000000e+00]
    [2.77555756e-17 1.00000000e+00]]
```


Linear set of equations can be compactly represented as matrix equation

- Example:

$$
\begin{aligned}
& 2 x+3 y=6 \\
& 4 x+9 y=15
\end{aligned}
$$

Solution is $x=\frac{3}{2}, y=1$

- More general example:

$$
\begin{aligned}
& a_{1,1} x_{1}+a_{1,2} x_{2}+a_{1,3} x_{3}=b_{1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}+a_{2,3} x_{3}=b_{2} \\
& a_{3,1} x_{1}+a_{3,2} x_{2}+a_{3,3} x_{3}=b_{3}
\end{aligned}
$$

is equivalent to:

$$
A \mathbf{x}=\mathbf{b}
$$

where $A \in \mathbb{R}^{3,3}, \mathbf{x} \in \mathbb{R}^{3}$ and $\mathbf{b} \in \mathbb{R}^{3}$.

- If matrix inverse exists, then solution is

$$
\mathbf{x}=A^{-1} b
$$

Singular matrices are similar to zeros

- Informally, singular matrices are matrices that do not have an inverse (similar to the idea that 0 does not have an inverse)
- Consider the 1D equation $a x=b$
- Usually we can solve for x by multiplying both sides by $1 / a$
- But what if $a=0$?
- What are the solutions to the equation?
- Called "singular" because a random matrix is unlikely to be singular just like choosing a random number is unlikely to be 0 .

In [18]:

```
from numpy.linalg import LinAlgError
def try_inv(A):
    print('A = ')
    print(np.array(A))
    try:
        np.linalg.inv(A)
    except LinAlgError as e:
        print(e)
    else:
        print('Not singular!')
    print()
try_inv([[0, 0], [0, 0]])
try_inv(np.eye(3))
try_inv([[1, 1], [1, 1]])
try_inv([[1, 10], [1, 10]])
try_inv([[2, 20], [4, 40]])
try_inv([[2, 20], [40, 4]])
```

$\mathrm{A}=$
$\left[\begin{array}{ll}{\left[\begin{array}{ll}0 & 0\end{array}\right]}\end{array}\right.$
[0 0]]
Singular matrix
$\mathrm{A}=$
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
Not singular!
A =
[$\left.\begin{array}{ll}1 & 1\end{array}\right]$
[1 1]]
Singular matrix
A $=$
[$\begin{array}{lll}{\left[\begin{array}{ll}10\end{array}\right]}\end{array}$
[1 10]]
Singular matrix
A =
[$\begin{array}{lll}{\left[\begin{array}{ll}2 & 20\end{array}\right]}\end{array}$
[4 40]]
Singular matrix
A $=$
[$\begin{array}{lll}{\left[\begin{array}{ll}2 & 20\end{array}\right]}\end{array}$
[40 4]]
Not singular!

In [19]:

```
# Random matrix is very unlikely to be 0
for j in range(10):
    try_inv(np.random.randn(2, 2))
```

A $=$
[[0.62116151 -1.01047326]
[0.9207096 0.13609464]]
Not singular!
$\mathrm{A}=$
[$\left[\begin{array}{lll}0.10241761 & 0.05638955\end{array}\right]$
[0.6554859 0.81492455]]
Not singular!
A $=$
[$\left[\begin{array}{ll}-0.62152324 & 0.43003518\end{array}\right]$
[-0.06451688-0.10078375]]
Not singular!
A $=$
[[-0.06023321 1.72412948]
[1.01745313 2.00707215]]
Not singular!
A =
[[0.15428838 0.01666077]
$\left[\begin{array}{ll}-0.06106018 & 1.63095398]\end{array}\right]$
Not singular!
A =
[[$-0.65684713-0.16658363]$
[-0.55606557-0.00458845]]
Not singular!
$\mathrm{A}=$
[[-2.04915067 -0.69560613]
[0.02569157 0.6574612]]
Not singular!
$\mathrm{A}=$
[[0.13000679-1.43767639]
[1.45339701 0.58621667]]
Not singular!
A $=$
[$\left[\begin{array}{ll}{[0.37263979} & 0.51563468\end{array}\right]$
[-1.06825911 -0.92117196]]
Not singular!
A =
[[2.66511491-1.02085393]
$\left[\begin{array}{lll}1.40486011 & 0.9248407 \text {]] }\end{array}\right.$
Not singular!

Norms: The "size" of a vector or matrix

- Informally, a generalization of the absolute value of a scalar
- Formally, a norm is an function f that has the following three properties:
- $f(\mathbf{x})=0 \Rightarrow \mathbf{x}=\mathbf{0}$ (zero point)
- $f(\mathbf{x}+\mathbf{y}) \leq f(\mathbf{x})+f(\mathbf{y})$ (Triangle inequality)
- $\forall \alpha \in \mathbb{R}, f(\alpha \mathbf{x})=|\alpha| f(\mathbf{x})$ (absolutely homogenous)
- Examples
- Absolute value of scalars
- p-norm (also denoted ℓ_{p}-norm)

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- (Discussion) What does this represent when $p=2$ (for simplicity you can assume $d=2$)?
- When $p=2$, we often merely denote as $\|\mathbf{x}\|$.
- What about when $p=1$?
- What about when $p=\infty$ (or more formally the limit as $p \rightarrow \infty$)?

In [20]:

```
x = np.array([1, 1])
print(np.linalg.norm(x, ord=2))
print(np.linalg.norm(x, ord=1))
print(np.linalg.norm(x, ord=np.inf))
```

1.4142135623730951
2.0
1.0

Vectors that have the same norm form a "ball" that isn't necessarily circular

In [21]:

```
rng = np.random.RandomState(0)
X = rng.randn(1000, 2)
p_vals = [1, 1.5, 2, 4, np.inf]
fig, axes = plt.subplots(1, len(p_vals), figsize=(len(p_vals)*4, 3))
for p, ax in zip(p_vals, axes):
    # Normalize them to have the unit norm
    Z = (X.T / np.linalg.norm(X, ord=p, axis=1)).T
    ax.scatter(Z[:, 0], Z[:, 1])
    ax.axis('equal')
    ax.set_title('Unit Norm Ball for $p$=%g' % p)
```


Squared L_{2} norm is quite common since it simplifies to a simple summation

$$
\|\mathbf{x}\|_{2}^{2}=\left(\left(\sum_{i=1}^{d}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}\right)^{2}=\sum_{i=1}^{d}\left|x_{i}\right|^{2}=\sum_{i=1}^{d} x_{i}^{2}
$$

- Additionally, this can be computed as $\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{T} \mathbf{x}$
- Informally, this is analogous to taking the square of a scalar number

In [22]:

```
x = np.arange(4)
print(np.linalg.norm(x, ord=2)**2)
print(np.dot(x, x))
```

14.0

14

Orthogonal vectors

- Orthogonal vectors are vectors such that $\mathbf{x}^{T} \mathbf{y}=0$
- The dot product between vectors can be written in terms of norms and the cosine of the angle:

$$
\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} \cos \theta
$$

- (Discussion) Suppose \mathbf{x} and \mathbf{y} are non-zero vectors, what must θ be if the vectors are orthogonal?

In [23]:

```
print(np.matmul([0, 1], [1, 0]))
theta = np.pi/2
x = np.array([np.cos(theta), -np.sin(theta)])
y = np.array([np.sin(theta), np.cos(theta)])
print(x)
print(y)
print(np.dot(x, y))
```

0
[$6.123234 \mathrm{e}-17-1.000000 \mathrm{e}+00$]
[1.000000e+00 6.123234e-17]
0.0

Special matrices: Orthogonal matrices

- Informally, an orthogonal matrix only rotates (or reflects) vectors around the origin (zero point), but does not change the size of the vectors.
- Informally, almost analagous to a 1 or -1 for matrices but more general
- A square matrix such that $Q^{T} Q=Q Q^{T}=I$
- Or, equivalently $Q^{-1}=Q^{T}$
- Or, equivalently:
- Every column (or row) is orthogonal to every other column (or row)
- Every column (or row) has unit ℓ_{2}-norm, i.e., $\left\|Q_{i,:}\right\|_{2}=\left\|Q_{:, j}\right\|_{2}=1$

```
In [24]:
print('Identity matrix')
Q = np.eye(2) # Identity
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
print('Reflection matrix')
Q = np.array([[1, 0], [0, -1]]) # Reflection
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
print('Rotation matrix')
theta = np.pi/3
Q = np.array([
    [np.cos(theta), -np.sin(theta)],
    [np.sin(theta), np.cos(theta)]
])
print(Q)
print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))
```

```
Identity matrix
```

Identity matrix
[[1. 0.]
[[1. 0.]
[0. 1.]]
[0. 1.]]
True
True
Reflection matrix
Reflection matrix
[[[1 0]
[[[1 0]
[0 -1]]
[0 -1]]
True
True
Rotation matrix
Rotation matrix
[[0.5 -0.8660254]
[[0.5 -0.8660254]
[0.8660254 0.5]]
[0.8660254 0.5]]
True

```
True
```


Other special matrices: Symmetric, Triangular, Diagonal

- Symmetric matrices are symmetric around the diagonal; formally, $A=A^{T}$
- Triangular matrices only have non-zeros in the upper or lower triangular part of the matrix
- Diagonal matrices only have non-zeros along the diagonal of a matrix

In [25]:

```
A = np.arange(25).reshape(5, 5)+1
print('Symmetric')
print(A + A.T)
print('Upper triangular')
print(np.triu(A))
print('Lower triangular')
print(np.tril(A))
print('Diagonal (both upper and lower triangular)')
print(np.diag(np.arange(5) + 1))
```

```
Symmetric
[[[ 2 8 8 14 20 26]
    [ [ 8 14 20 26 32]
    [14 140 26 32 38]
    [20 26 32 38 44]
    [26 32 38 44 50]]
Upper triangular
[[ [ 1 1 2 0 3 4 4 5]
    [ [0
    [[ 0
    [[ 0
    [ 0 0 0 0 0 25]]
Lower triangular
[[[ [1 0 0 0 0 0]
    [ 6
    [11
    [16
    [21 22 23 24 25]]
Diagonal (both upper and lower triangular)
[[\begin{array}{lllll}{1}&{0}&{0}&{0}&{0}\end{array}]
    [0}002~0,000]
```



```
    [0}000004% 0
    [0}00000055]
```


Multiplying a matrix by a diagonal matrix scales the columns or rows

- Right multiplication scales rows
- Left multiplication scales columns

In [26]:

```
A = np.arange(16).reshape(4, 4)
print(A)
D = np.diag(10**(np.arange(4)))
diag_vec = np.diag(D)
print(D)
print('AD')
print(np.matmul(A, D))
print('AD (via numpy * and broadcasting)')
print(A * diag_vec)
print('DA')
print(np.matmul(D, A))
print('DA (via numpy * and broadcasting)')
print((A.T * diag_vec).T)
```

[$\left[\begin{array}{llll}{[} & 0 & 1 & 2 \\ 3\end{array}\right]$
$\left[\begin{array}{llll}4 & 5 & 6 & 7\end{array}\right]$
[$\left.\begin{array}{llll}8 & 9 & 10 & 11\end{array}\right]$
[$\left.\begin{array}{llll}12 & 13 & 14 & 15\end{array}\right]$
$\left[\begin{array}{ccrrr}{[} & 1 & 0 & 0 & 0] \\ {[} & 0 & 10 & 0 & 0] \\ {[} & 0 & 0 & 100 & 0] \\ {[} & 0 & 0 & 0 & 1000]]\end{array}\right.$
AD
$\left.\left[\begin{array}{rrrr}{[} & 0 & 10 & 200 \\ {[} & 4 & 50 & 600 \\ {[} & 8 & 90 & 1000 \\ {[} & 11000] \\ {[} & 12 & 130 & 1400\end{array} 15000\right]\right]$
AD (via numpy * and broadcasting)
[[$\begin{array}{lllll}{[} & 0 & 10 & 200 & 3000]\end{array}$
$\left[\begin{array}{lllll}{[} & 4 & 50 & 600 & 7000\end{array}\right]$
$\left[\begin{array}{rrrr}{[} & 8 & 90 & 1000 \\ 11000\end{array}\right]$
DA
$\left[\begin{array}{lrrrr}{[} & 0 & 1 & 2 & 3] \\ {[} & 40 & 50 & 60 & 70] \\ {[} & 800 & 900 & 1000 & 1100] \\ {[12000} & 13000 & 14000 & 15000]]\end{array}\right]$
DA (via numpy * and broadcasting)
$\left[\begin{array}{lrrrr}{[} & 0 & 1 & 2 & 3] \\ {[} & 40 & 50 & 60 & 70] \\ {[} & 800 & 900 & 1000 & 1100] \\ {[12000} & 13000 & 14000 & 15000]]\end{array}\right]$.

Inverse of diagonal matrix is formed merely by taking inverse of diagonal elements

- Most operations on diagonal matrices are just the scalar versions of their entries

```
A = np.diag(np.arange(5)+1)
print(A)
diag_A = np.diag(A)
print('diag_A', diag_A)
diag_A_inv = 1 / diag_A
print('diag_A_inv', diag_A_inv)
Ainv = np.diag(diag_A_inv)
print(Ainv)
Ainv_full = np.linalg.inv(A)
print(Ainv_full)
```

[$\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 2 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 3 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lllll}0 & 0 & 0 & 4 & 0\end{array}\right]$
[0 00 0 0 5] $]$
diag_A [1 2 3 4 5]
$\left.\begin{array}{llllll}\text { diag_A_inv } & \text { [1. } & 0.5 & 0.33333333 & 0.25 & 0 \\ {\left[\begin{array}{ll}1 . & 0 .\end{array}\right.} & 0 . & 0 . & 0 . &] \\ {[0 .} & 0.5 & 0 . & 0 . & 0 . &] \\ {[0 .} & 0 . & 0.33333333 & 0 . & 0 . &] \\ {[0 .} & 0 . & 0 . & 0.25 & 0 . &] \\ {[0 .} & 0 . & 0 . & 0 . & 0.2 &]\end{array}\right]$

[[1.	0 .	0 .	0 .	0 .]
[0.	0.5	0.	0 .	0 .]
[0.	0 .	0.33333333	0 .	0 .]
[-0.	-0.	-0.	0.25	-0.]
[0.	0 .	0.	0 .	0.2]]

Motivation: Matrix decompositions allow us to understand and manipulate matrices both theoretically and practically

- Analagous to prime factorization of an integer, e.g., $12=2 \times 2 \times 3$
- Allows us to determine whether things are divisible by other integers
- Analagous to representing a signal in the time versus frequency domain
- Both domains represent the same object but are useful for different computations and derivations

Eigendecomposition

- For real symmetric matrices, the eigendecomposition is:

$$
A=Q \Lambda Q^{T}
$$

where Q is an orthogonal matrix and Λ is a diagonal matrix.

- Often in notation, it is assumed that the diagonal of Λ, denoted λ is ordered by decreasing values, i.e., $\lambda_{1} \geq \lambda_{2}, \geq \cdots \geq \lambda_{d}$.
- λ are known as the eigenvalues and Q is known as the eigenvector matrix

In [28]:

```
rng = np.random.RandomState(0)
B = rng.randn(4,4)
A = B + B.T # Make symmetric
lam, Q = np.linalg.eig(A)
print(np.diag(lam))
print(Q)
A_reconstructed = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')
```

[[6.54930093	0.	0.	0
[0.	-3.728219	0 .	0 .
[0.	0.	0.45077461	0 .
[0.	0	0	-0.7428718]]
[[0.77115168	0.36010163	0.51908231	-0.07877468]
[0.25392564	-0.75129904	0.0518548	-0.60694531]
[0.31251286	0.37021589	-0.78092889	-0.394241]
[0.49313545	-0.41087317	-0.34353267	0.68555523]]
Are all entries equal up to machine precision?			

Simple properties based on eigendecomposition

- A^{-1} is easy to compute
- Easy to solve equation $A \mathbf{x}=\mathbf{b}$
- Powers of matrix is easy to compute $A^{3}=A A A$.
- The matrix is singular if and only if there is a zero in λ

Positive definite (or semidefinite) matrices have positive (or possibly 0) eigenvalues

- A is positive definite (PD) if and only if $\forall \mathbf{x}, \mathbf{x}^{T} A \mathbf{x}>0$
- Positive semi-definite (PSD) is where there could be zero eigenvalues.
- Informally, a PD matrix is like $a>0$ in a quadratic formula, $a x^{2}$
- Scalar quadratic: $a x^{2}+b x+c$
- Vector quadratic: $\mathbf{x}^{T} A \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c$
- A is a generalization of a in the scalar equation
- If not positive definite, there may be saddle points.

```
# Get random orthogonal matrix Q
rng = np.random.RandomState(0)
Q, _ = np.linalg.qr(rng.randn(2, 2))
# Create positive definite matrix
lam = np.array([1, 1]) # Positive definite
#lam = np.array([1, 1]) # Negative definite
#lam = np.array([-1, 1]) # Not positive or negative definite
# Construct a matrix from Q and lambda
A = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
# Plot 3D
from mpl_toolkits.mplot3d import Axes3D
v = np.linspace(-10, 10, num=20)
xx, yy = np.meshgrid(v, v)
X = np.array([xx.ravel(), yy.ravel()]).T
f = np.sum(np.matmul(A, X.T) * X.T, axis=0)
ff = f.reshape(xx.shape)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(xx, yy, ff, cmap='viridis')
```

Out[29]: <mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fc77da1f1d0>

Singular value decomposition of any matrix (The decomposition to end all decompositions)

- For any matrix $A \in \mathbb{R}^{m \times n}$ (even non-square), the singular value decomposition is:
where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal (though not necessarily square) matrix.
- Often in notation, it is assumed that the diagonal of Σ, denoted σ is ordered by decreasing values, i.e., $\sigma_{1} \geq \sigma_{2}, \geq \cdots \geq \sigma_{d}$.
- σ are known as the singular values and U and V are known as the left singular vectors and the right singular vectors respectively.

In [30]:

```
rng = np.random.RandomState(0)
A = np.arange(6).reshape(2, 3)
print('A', A.shape)
print(A)
# Note returns V^T (i.e. transpose) rather than V
U, s, Vt = np.linalg.svd(A, full_matrices=True)
# Convert singular vector to matrix
Sigma = np.zeros_like(A, dtype=float)
Sigma[:2, :2] = np.diag(s)
print('U', U.shape)
print('Sigma', Sigma.shape)
print('Vt', Vt.shape)
A_reconstructed = np.matmul(U, np.matmul(Sigma, Vt))
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A_reconstructed) else 'No')
```

```
A (2, 3)
```

[$\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]$
[3 4 4]]
$\mathrm{U}(2,2)$
Sigma (2, 3)
Vt (3, 3)
Are all entries equal up to machine precision?
Yes

Rank $\operatorname{rank}(A)$ is the number of linearly independent columns

- Consider an example of two equations with two unknowns (Is there a unique solution?):
- $2 x+3 y=0$
- $4 x+6 y=1$
- Similar to a matrix $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right]$, notice "redundancy"
- SVD -> Rank = Number of non-zero singular values
- If $A \in \mathbb{R}^{d \times d}, A$ is not singular if and only if $\operatorname{rank}(A)=d$.
- Simplest case is rank 1 matrix: $\mathbf{x y}^{T}$ (show on board)
- Notice difference from inner product, denoted as $\mathbf{x}^{T} \mathbf{y}$
- $\mathbf{x y ~}^{T}$ is also known as the outer product of two vectors

Matrix multiplication can be seen as a sum of rank 1 matrices

- $A B=\sum_{i=1}^{d} A_{:, i} B_{i,:}$, where $A_{:, i}$ is the i-th column of A and $B_{i,:}$ is the i-th row of B

```
In [31]:
A = np.arange(6).reshape(2, 3)
print(A)
B = -np.arange(6).reshape(3, 2)
print(B)
AB_sum = np.zeros((2, 2))
for acol, brow in zip(A.T, B):
    AB sum += np.outer(acol, brow)
print('AB sum formula')
print(AB_sum)
print('AB standard')
AB = np.matmul(A, B)
print(AB)
```

```
[[\begin{array}{lll}{0}&{1}&{2}\end{array}]
    [3 4 5]]
[[\begin{array}{lll}{0}&{-1]}\end{array}]
    [-2 -3]
    [-4 -5]]
AB sum formula
[[-10. -13.]
    [-28. -40.]]
AB standard
[[-10 -13]
    [-28 -40]]
```


SVD provides powerful interpretation of matrix as sum of rank one matrices

$$
A=U \Sigma V^{T}=\sum_{i=1}^{\operatorname{rank}(A)} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

- SVD can be used to solve the following matrix approximation problem:

$$
\min _{B}\|A-B\|_{F} \quad \text { s.t. } \quad \operatorname{rank}(B) \leq r
$$

where $\|A\|_{F}$ is the Frobenius norm, or just like the ℓ_{2}-norm but consider the matrix as a long vector.

- Example:

$$
\|A\|_{F}=\left\|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\|_{F}=\|[a, b, c, d]\|_{2}
$$

```
from sklearn.datasets import load_sample_image
china = load_sample_image('china.jpg')
gray_china = china[:,:,0]/255.0
print('china matrix', gray_china.shape)
#print(gray_china)
U, s, Vt = np.linalg.svd(gray_china)
Sigma = np.zeros_like(gray_china, dtype=float)
Sigma[:427, :427] = np.diag(s)
```

china matrix $(427,640)$

In [33]:

```
max_rank = np.min(gray_china.shape)
rank_arr = [1, 2, 4, 8, 16, 32, 64, 128, max_rank]
fig, axes = plt.subplots(3, 3, figsize=(len(rank_arr)*2, 3*4))
for r, ax in zip(rank_arr, axes.ravel()):
    china_approx = np.matmul(U[:, :r], np.matmul(Sigma[:r,:r], Vt[:r, :]))
    compression = r/max_rank
    ax.imshow(china_approx, cmap='gray')
    ax.set_title('Rank=%d, Compression=%.1f%%' % (r, compression*100))
```


Usually the most important information is in the first few singular values

\# The most important components are
plt.plot(s,'.')

Out[34]: [<matplotlib.lines.Line2D at 0x7fc77ef91898>]

Determinant $\operatorname{det}(A)$ (of square matrix) is the product of eigenvalues λ

$$
\operatorname{det}(A)=|A|=\prod_{i=1}^{d} \lambda_{i}
$$

- Absolute value of determinant roughly measures how much the matrix expands or contracts space
- Example: if determinant is 0 , then compresses vectors onto a smaller subspace
- Example: if determinant is 1 , then volume is preserved (how is this different than orthogonal matrix?)

In [35]:

```
A = np.arange(4).reshape(2,2)
print('A')
print(A)
print('prod of eigenvalues')
lam, Q = np.linalg.eig(A)
print(np.prod(lam))
print('det(A)')
print(np.linalg.det(A))
```

A
[$\left[\begin{array}{ll}0 & 1\end{array}\right]$
[2 3]]
prod of eigenvalues
-2.0
$\operatorname{det}(\mathrm{A})$
-2. 0

Trace $\operatorname{Tr}(A)$ operation

- Trace is just the sum of the diagonal elements of a matrix

$$
\operatorname{Tr}(A)=\sum_{i=1}^{d} a_{i, i}
$$

- Most useful property is rotational equivalence:
$\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)$
- In particular, (even if different dimensions)

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

In [36]:

```
A = np.arange(2*3).reshape(2,3)
B = A.copy().T
print('AB')
print(np.matmul(A, B))
print('Tr(AB)')
print(np.trace(np.matmul(A, B)))
print('Tr(BA)')
print(np.trace(np.matmul(B, A)))
print('Tr(A^T B^T)')
print(np.trace(np.matmul(A.T, B.T)))
print('Tr(B^T A^T)')
print(np.trace(np.matmul(B.T, A.T)))
```


AB

[$\left.\begin{array}{lll}{[5} & 14\end{array}\right]$
[14 50]]
$\operatorname{Tr}(A B)$
55
$\operatorname{Tr}(B A)$
55
$\operatorname{Tr}\left(A^{\wedge} T B^{\wedge} T\right)$
55
$\operatorname{Tr}\left(B^{\wedge} T A^{\wedge} T\right)$
55

