Brief Review of Linear Algebra

Content and structure mainly from: http://www.deeplearningbook.org/contents/linear_algebra.html
(http://www.deeplearningbook.org/contents/linear_algebra.html)

In [1l]: import numpy as np
import matplotlib.pyplot as plt

Scalars

» Single number

« Denoted as lowercase letter

» Examples
= x € R - Real number
» ye {0,1,...,C} - Finite set
= u € [0, 1] - Bounded set

In [2]: x = 1.1343
print(x)
z = int(-5)
print(z)

1.1343
-5

Vectors

» Array of numbers
 In notation, we usually consider vectors to be "column vectors"
« Denoted as lowercase letter (often bolded)
« Dimension is often denoted by d, D, or p.
» Access elements via subscript, e.g., X; is the i-th element
« Examples

- x € RY

X1

X2
n X =

Xd
= X =[x, X0, ..., x4]7
n 7= [‘/Xl,\/XZ,... ,,/xd]T

= ye{0,1,...,C}? - Finite set
u € [0, 1]¢ - Bounded set


http://www.deeplearningbook.org/contents/linear_algebra.html

In [3]:

In [4]:

In [5]:

Out[5]:

In [6]:

Oout[6]:

X = np.array([1.1343, 6.2345, 35])
print(x)

z = 5 * np.ones(3, dtype=int)
print(z)

[ 1.1343 6.2345 35. ]
[55 5]

Note: The operator + does different things on
numpy arrays vs Python lists

» For lists, Python concatenates the lists
« For numpy arrays, numpy performs an element-wise addition

o Similarly, for other binary operators suchas -, +, *,and /
a list = [1, 2]
b list = [30, 40]

c_list = a_list + b_list

print(c_list)

a = np.array(a_list) # Create numpy array from Python list
b = np.array(b list)

c=a+b

print(c)

[1, 2, 30, 40]
[31 42]

type(a_list)

list

type(a)

numpy.ndarray

Matrices

» 2D array of numbers
» Denoted as uppercase letter
« Number of samples often denoted by n or N.
» Access rows or columns via subscript or numpy notation:
» X, .isthei-throw, X, ;is the jth column
= (Sometimes) X;, X; is the i-th row or column depending on context
« Access elements by double subscript X; ; or x; ; is the i, j-th entry of the matrix
o Examples
» X € R™ - Real number



In [7]:

1 2 3
4 5
= Y €{0,1,...,C}* - Finite set
= U € [0, 1] - Bounded set

= X = l l - Real number

X = np.arange(l2).reshape(3,4)
print(X)
W = np.array([
[1.1343 + 2.13, 13, 0.1 + 3.5751,
[31 4! 5]!
1)
print (W)
Z =5 * np.ones((3, 3), dtype=int)
print(2)

[ 0O 1 2 3]
[ 4 5 6 7]
[ 8 9 10 117]]
[[1.1343+2.17 0. +1.j 0.1 +3.57]
[3. +0.3 4. +0.j 5. +0.3 11
[[5 5 5]
[5 5 5]
[55 51]]

[

Tensors

e n-D arrays
» Examples
= X € R™™™ single color image in PyTorch
= X € R™XmXm uitiple color images in PyTorch
« X € R™™3 single color image for matplotlib imshow



In [8]: from sklearn.datasets import load sample image
china = load sample image( 'china.jpg')
print('Shape of image (height, width, channels):
ax = plt.axes(xticks=[], yticks=[])
ax.imshow(china);

, china.shape)

Shape of image (height, width, channels): (427, 640, 3)

Matrix transpose

« Changes columns to rows and rows to columns
« Denoted as AT
» For vectors v, the transpose changes from a column vector to a row vector

T
X1 X1
X2 X2
T
x=| | x = | =I[x,x...,x4]
Xd Xd

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a
row or column vector per se.

In [9]: A = np.arange(6).reshape(2,3)
print (4)
print (A.T)

[[0 1 2]
[3 4 5]]
[0 3]
[l 4]
[2 511

NOTE: In numpy, there is only a "vector" (i.e., a 1D array), not really a
row or column vector per se.



In [10]:

In [11]:

v = np.arange(5)

print('A numpy vector', v)
print('Transpose of numpy vector', v.T)
print('A matrix with one column')

V = v.reshape(-1, 1)

print('V shape: ', V.shape)

print (V)

A numpy vector [0 1 2 3 4]
Transpose of numpy vector [0 1 2 3 4]
A matrix with one column
V shape: (5, 1)
[[0]
[1]
[2]
[3]
[4]1]

Matrix product

¢ Let A € R™", B € R™?, then the matrix product C = A B is defined as:
ij = Z aj i by j
ke{12,....n}
where C € R™? (notice how inner dimension is collapsed.
» (Show on board visually)

c

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
C = np.zeros((A.shape[0], B.shape[l]))
for i in range(C.shape[0]):
for j in range(C.shape[l]):
for k in range(A.shape[l]):
Cli, j]1 += A[i, k] * B[k, J]
print(C)
print(np.matmul (A, B))

[[0 1]
[2 3]
[4 5]]

[[0 1 2]
[3 4 5]]

[[ 3. 4. 5.]
[ 9. 14. 19.]
[15. 24. 33.]]

[[ 3 4 5]

[ 9 14 19]
[15 24 33]]



In

[12]:

Notice triple loop, naively cubic complexity
O(n?)

However, special linear algebra algorithms can do it O(n>5%%)

Takeaway - Use numpy np.matmul or @ operator for matrix
multiplication

(np.dot also works for matrix multiplication but is different in PyTorch and is less explicit so |
suggest the two methods above for matrix multiplication)

Element-wise (Hadamard) product NOT equal to
matrix multiplication

« Normal matrix mutiplication C = A B is very different from element-wise (or more formally
Hadamard) multiplication, denoted F' = A ® D, which in numpy is just the star *

A = np.arange(6).reshape(3, 2)
print(A)
B = np.arange(6).reshape(2, 3)
print(B)
try:
A * B # Fails since matrix shapes don't match and cannot broadcast
except ValueError as e:
print( 'Operation failed! Message below:')
print(e)

[[0 1]
[2 3]
[4 5]1]
[[0 1 2]
[3 4 5]]
Operation failed! Message below:
operands could not be broadcast together with shapes (3,2) (2,3)



In [13]: print(A)
D = 10*B.T
print (D)
F=A*D # Element-wise / Hadamard product
print(F)

[[0 1]
[2 3]
[4 5]]

[[ 0 30]
[10 40]
[20 50]]

[[ 0 30]
[ 20 120]
[ 80 250]]

Properties of matrix product

« Distributive: A(B+ C) = AB+ AC

 Associative: A(BC) = (AB)C

o NOT commutative, i.e., AB = BA does NOT always hold

« Transpose of multiplication (switch order and transpose of both):
(AB)T = BT AT

In [14]: print('AB')
print(np.matmul (A, B))
print('BA")
print(np.matmul (B, A))
print (' (AB)"T")
print(np.matmul (A, B).T)
print('B"T A"T")
print(np.matmul(B.T, A.T))

AB
[[ 3 4 5]
[ 9 14 19]
[15 24 33]]

BA

[[10 13]
[28 407]]
(AB)"T

([ 3 9 15]
[ 4 14 24]
[ 519 33]]

B T A"T

([ 3 9 15]
[ 4 14 24]
[ 519 33]]

Properties of inner product or vector-vector
product



In [15]:
Out[1l5]:
In [16]:

» Inner product or vector-vector multiplication produces scalar:
T T \T T
Xy=xy =yx
Also denoted as:
T
(xy)=xy
Can be executed via np.dot or np.matmul

# Inner product

a = np.arange(3)

print(a)

b = np.array([11, 22, 33])
print(b)

np.dot(a, b)

[0 1 2]
[11 22 33]
88

Identity matrix keeps vectors unchanged

Multiplying by the identity does not change vector (generalizing the concept of the scalar 1)
Formally, I, € R™", andVx € R", I,x = x

Structure is ones on the diagonal, zero everywhere else:

» np.eye function to create identity

I3 = np.eye(3)

print (I3)

X = np.random.randn(3)
print(x)
print(np.matmul (I3, x))

[[l. 0. 0.]
[0. 1. 0.]
[0. 0. 1.7]

[1.45901765 0.6176544 0.10913208]
[1.45901765 0.6176544 0.10913208]

Matrix inverse times the original matrix is the
identity

« The inverse of square matrix A € n X n is denoted as A~! and defined as:

A'A=1
» The "right" inverse is similar and is equal to the left inverse:
AAT =T

» Generalizes the concept of inverse x and %
Does NOT always exist, similar to how the inverse of x only exists if x # 0



In [17]:

A = 100 * np.array([[1l, 0.5], [0.2, 111)

print (A)
Ainv = np.linalg.inv(A)
print (Ainv)

print('A"{-1} A = ")
print(np.matmul (Ainv, A))
print('A A™{-1} = ")

print(np.matmul (A, Ainv))

[[100. 50.]
[ 20. 100.]]
[[ 0.01111111 -0.00555556]
[-0.00222222 0.011111117]]
A {-1} A =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+00]]

A AM{-1} =

[[1.00000000e+00 0.00000000e+00]
[2.77555756e-17 1.00000000e+007]]

Linear set of equations can be compactly

represented as matrix equation

« Example:

ion i -3 ,_
Solutionis x = 5,y =1

« More general example:

is equivalent to:

2x +3y= 6
4x + 9y = 15.

aj1xy +ajax; +a;3x3 = by
a1 X1+ axp Xy + ay3x3 = by

az1 X1 + a3 Xy + az3x3 = bs

Ax=Db

where A € R3’3,X €R3>andb € R,
o |f matrix inverse exists, then solution is

Singular matrices are similar to zeros

 Informally, singular matrices are
does not have an inverse)
» Consider the 1D equation ax =

x=A"'p

matrices that do not have an inverse (similar to the idea that 0

b

» Usually we can solve for x by multiplying both sides by 1/a

= Butwhatifa =07?

= What are the solutions to the equation?



» Called "singular" because a random matrix is unlikely to be singular just like choosing a
random number is unlikely to be 0.

In [18]: from numpy.linalg import LinAlgError
def try inv(A):
print('A = ")
print(np.array(A))
try:
np.linalg.inv(A)
except LinAlgError as e:
print(e)
else:
print('Not singular!')
print()

try_inv([[0, 0], [0, 0]])
try inv(np.eye(3))
try_inv([[1l, 1], [1, 1]1)
try_inv([[1, 101, [1, 10]1)
try_inv([[2, 20], [4, 40]1])
try_inv([[2, 20], [40, 411])

A =

[[0 0]

[0 0]]
Singular matrix

A =

[[l. 0. 0.]
[0. 1. 0.]
[0. 0. 1.7]

Not singular!

A =

[[1 1]

[11]]
Singular matrix

A =

([ 110]

[ 1 10]]
Singular matrix

A =

([ 2 20]

[ 4 40]]
Singular matrix

A =

([ 2 20]

[40 4]]
Not singular!



In [19]:

# Random matrix is very unlikely to be 0

for j in range(10):

try inv(np.random.randn(2, 2))

A =

[[ 0.62116151 -1.01047326]

[ 0.9207096
Not singular!

A =

0.

136094641]

[[0.10241761 0.05638955]

[0.6554859
Not singular!

A =

[[-0.62152324
[-0.06451688
Not singular!

A =
[[-0.06023321
[ 1.01745313

Not singular!

A =

[[ 0.15428838
[-0.06106018

Not singular!

A =

[[-0.65684713
[-0.55606557
Not singular!

A =
[[-2.04915067
[ 0.02569157

Not singular!

A =

[[ 0.13000679
[ 1.45339701

Not singular!

A =

[[ 0.37263979
[-1.06825911

Not singular!

A =

[[ 2.66511491
[ 1.40486011

Not singular!

-0.
-0.

0.81492455]]

.43003518]
.10078375]]

.72412948]
.00707215]]

.01666077]
.63095398]]

16658363 ]
004588457 ]

.69560613]
.6574612 1]

.43767639]
.58621667]]

.51563468]
.92117196]]

.02085393]
.9248407 1]



Norms: The "size" of a vector or matrix

 Informally, a generalization of the absolute value of a scalar
« Formally, a norm is an function f that has the following three properties:
» f(x) =0 = x = 0 (zero point)
= f(x+Yy) L f(x)+ f(y) (Triangle inequality)
» Ya € R, f(ax) = |a| f(X) (absolutely homogenous)
» Examples
= Absolute value of scalars
= p-norm (also denoted £ ,-norm)

d »
Ixll, = Y 1xil?
i=1

(Discussion) What does this represent when p = 2 (for simplicity you can assume d = 2)?
o When p = 2, we often merely denote as ||x||.

= What about when p = 1?

» What about when p = oo (or more formally the limit as p — ©0)?

In [20]: x = np.array([1l, 17])
print(np.linalg.norm(x, ord=2))
print(np.linalg.norm(x, ord=1l))
print(np.linalg.norm(x, ord=np.inf))

1.4142135623730951
2.
1.

o O B

Vectors that have the same norm form a "ball" that isn't
necessarily circular

In [21]: rng = np.random.RandomState(0)
X = rng.randn(1000, 2)

p _vals = [1, 1.5, 2, 4, np.inf]
fig, axes = plt.subplots(l, len(p vals), figsize=(len(p_vals)*4, 3))

for p, ax in zip(p_vals, axes):
# Normalize them to have the unit norm
Z = (X.T / np.linalg.norm(X, ord=p, axis=1)).T
ax.scatter(zZ[:, 0], Z[:, 1])
ax.axis('equal')
ax.set title('Unit Norm Ball for $p$=%g' % p)

Unit Norm Ball for p=1 Unit Norm Ball for p=1.5 Unit Morm Ball for p=2 Unit Morm Ball for p=4 Unit Morm Ball for p=inf

05 05 05 05 05

o0 0o 0.0 0.0 0o

-1.0 -1.0 -1.0 -1.0 -1.0
-10 -05 0o 05 10 -10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00 05 10




In

[22]:

Squared L, norm is quite common since it simplifies to a
simple summation

2

IxI13 = <Z|x1|2> =§d}|x|2 zx

i=1
« Additionally, this can be computed as ||X||% =x'x
« Informally, this is analogous to taking the square of a scalar number

X = np.arange(4)
print(np.linalg.norm(x, ord=2)**2)
print(np.dot(x, x))

14.0
14

Orthogonal vectors

» Orthogonal vectors are vectors such that XTy =0
» The dot product between vectors can be written in terms of norms and the cosine of the angle:

T
x'y = [Ix|l2[lyll> cos &
« (Discussion) Suppose X and y are non-zero vectors, what must 6 be if the vectors are

orthogonal?

print(np.matmul ([0, 1], [1, 0]))

theta = np.pi/2

X = np.array([np.cos(theta), -np.sin(theta)])
y np.array([np.sin(theta), np.cos(theta)])
print(x)

print(y)

print(np.dot(x, y))

0
[ 6.123234e-17 -1.000000e+00]
[1.000000e+00 6.123234e-17]
0.0

Special matrices: Orthogonal matrices

« Informally, an orthogonal matrix only rotates (or reflects) vectors around the origin (zero point),
but does not change the size of the vectors.
« Informally, almost analagous to a 1 or -1 for matrices but more general
« A square matrix such that 0TQ = Q0T =1
« Or, equivalently Q' = QT
» Or, equivalently:
= Every column (or row) is orthogonal to every other column (or row)



In

[24]:

= Every column (or row) has unit £,-norm, i.e., [|Q;.[l» = [|Q.l[» =1

print('Identity matrix')

Q = np.eye(2) # Identity

print(Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

print('Reflection matrix')

Q = np.array([[1l, 0], [0, =-1]]) # Reflection
print(Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

print('Rotation matrix')

theta = np.pi/3

Q = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]

1)

print (Q)

print(np.allclose(np.eye(2), np.matmul(Q.T, Q)))

Identity matrix
[[1. 0.]
[0. 1.7]]
True
Reflection matrix
([ 1 0]
[ 0 -1]]
True
Rotation matrix
[[ 0.5 -0.8660254]
[ 0.8660254 0.5 11
True

Other special matrices: Symmetric, Triangular,
Diagonal
« Symmetric matrices are symmetric around the diagonal; formally, A = AT

« Triangular matrices only have non-zeros in the upper or lower triangular part of the matrix
» Diagonal matrices only have non-zeros along the diagonal of a matrix



In [25]: A = np.arange(25).reshape(5, 5)+1
print('Symmetric')
print(A + A.T)
print( 'Upper triangular')
print(np.triu(a))
print('Lower triangular')
print(np.tril(A))
print('Diagonal (both upper and lower triangular)')
print(np.diag(np.arange(5) + 1))

Symmetric
[[ 2 8 14 20 26]
[ 8 14 20 26 32]
[14 20 26 32 38]
[20 26 32 38 44]
[26 32 38 44 50]]
Upper triangular
[[ 1 2 3 4 5]
[ 0O 7 8 9 10]
[ 0 13 14 15]
[ 0 0 19 20]
[ 0O 0 0O 0 25]]
Lower triangular
[[1 0 0 0 0]
[ 6 7 0 0 0]
[11 12 13 0 O]
[16 17 18 19 0]
[21 22 23 24 25]]
Diagonal (both upper and lower triangular)

0
0

[[L 00O 0]
[0200 0]
[0030 0]
[000 4 0]
[0000 5]]

Multiplying a matrix by a diagonal matrix scales the
columns or rows

« Right multiplication scales rows
o Left multiplication scales columns



In [26]: A = np.arange(l6).reshape(4, 4)
print (A)
D = np.diag(l0**(np.arange(4)))
diag vec = np.diag(D)
print (D)
print('AD")
print(np.matmul (A, D))
print('AD (via numpy * and broadcasting)')
print(A * diag vec)
print('DA")
print (np.matmul (D, A))
print('DA (via numpy * and broadcasting)')
print((A.T * diag vec).T)

[0 1 2 3]
[ 4 5 6 7]

[ 8 9 10 11]

[12 13 14 15]]

[ 1 0 0 0]

0 10 0 0]
[0 0 100 0]
[ 0 0 0 1000]]
AD
[ 0 10 200 3000]
4 50 600 7000]

8 90 1000 11000]
[ 12 130 1400 150007]]
AD (via numpy * and broadcasting)

[ 0 10 200 3000]
[ 4 50 600 7000]
[ 8 90 1000 11000]
[ 12 130 1400 150007]]

DA

[ 0 1 2 3]

[ 40 50 60 70]

[ 800 900 1000 1100]

[12000 13000 14000 15000]]
DA (via numpy * and broadcasting)
[r 0 1 2 3]

[ 40 50 60 70]

[ 800 900 1000 1100]

[12000 13000 14000 15000]]

Inverse of diagonal matrix is formed merely by taking
inverse of diagonal elements

» Most operations on diagonal matrices are just the scalar versions of their entries



In [27]:

A = np.diag(np.arange(5)+1)
print (A)

diag A = np.diag(A)
print('diag A', diag A)
diag A inv = 1 / diag A
print('diag A inv', diag A inv)
Ainv = np.diag(diag A inv)
print (Ainv)

Ainv_full = np.linalg.inv(A)
print (Ainv_full)

[[L 00O 0]

[0200 0]

[00300]

[000 4 0]

[0000 5]]

diag A [1 2 3 4 5]

diag A inv [1. 0.5 0.33333333 0.25
[[1. 0. 0. 0. 0.
[0. 0.5 0. 0. 0.
[0. 0. 0.33333333 0. 0.
[0. 0. 0. 0.25 0.
[0. 0. 0. 0. 0.2
([ 1. 0. 0. 0.

[ O. 0.5 0. 0.

[ 0. 0. 0.33333333 0.

[-0. -0. -0. 0.25

[ 0. 0. 0. 0.

Motivation: Matrix decompositions allow us to
understand and manipulate matrices both

theoretically and practically

 Analagous to prime factorization of an integer, e.g., 12 =2 X 2 X 3
= Allows us to determine whether things are divisible by other integers

» Analagous to representing a signal in the time versus frequency domain

= Both domains represent the same object but are useful for different computations and

derivations

Eigendecomposition

» For real symmetric matrices, the eigendecomposition is:
A =QAQO"
where Q is an orthogonal matrix and A is a diagonal matrix.

» Often in notation, it is assumed that the diagonal of A, denoted J is ordered by decreasing

values, i.e., A; > Ay, > -+ > Ay4.

» A are known as the eigenvalues and Q is known as the eigenvector matrix

—_— e i — —_— O
.

[ S T B T S



In [28]:

rng = np.random.RandomState(0)
B = rng.randn(4,4)
A =B + B.T # Make symmetric

lam, Q = np.linalg.eig(A)

print(np.diag(lam))

print(Q)

A reconstructed = np.matmul(np.matmul(Q, np.diag(lam)), Q.T)
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A reconstructed) else 'No')

.54930093 0.
-3.728219

6 0 0. 1
0 0. 0. 1
0. 0. 0.45077461 O. 1
0. 0. 0. -0.7428718 ]]
0.77115168 0.36010163 0.51908231 -0.07877468]
0.25392564 -0.75129904 0.0518548 -0.60694531]
0.31251286 0.37021589 -0.78092889 -0.394241 ]

[ 0.49313545 -0.41087317 -0.34353267 0.68555523]]
Are all entries equal up to machine precision?

Yes

—, o, o, o, .,

Simple properties based on eigendecomposition

« A~ !is easy to compute
» Easy to solve equation Ax = b
« Powers of matrix is easy to compute A3 = AAA.
» The matrix is singular if and only if there is a zero in A

Positive definite (or semidefinite) matrices have positive (or
possibly 0) eigenvalues

« A is positive definite (PD) if and only if Vx, X! Ax > 0
» Positive semi-definite (PSD) is where there could be zero eigenvalues.
« Informally, a PD matrix is like a > 0 in a quadratic formula, ax?
= Scalar quadratic: ax®> + bx +c
= Vector quadratic: X Ax + b x + ¢
= A is a generalization of a in the scalar equation
« If not positive definite, there may be saddle points.



In [29]: # Get random orthogonal matrix Q
rng = np.random.RandomState(0)

Q, _ = np.linalg.qgr(rng.randn(2, 2))
# Create positive definite matrix
lam = np.array([l, 1]) # Positive definite

#lam = np.array([l, 1]) # Negative definite
#lam = np.array([-1, 1]) # Not positive or negative definite

# Construct a matrix from Q and lambda
A = np.matmul (np.matmul(Q, np.diag(lam)), Q.T)

# Plot 3D

from mpl toolkits.mplot3d import Axes3D

v = np.linspace(-10, 10, num=20)

XX, Yy = np.meshgrid(v, v)

X = np.array([xx.ravel(), yy.ravel()]).T

f = np.sum(np.matmul (A, X.T) * X.T, axis=0)
ff = f.reshape(xx.shape)

fig = plt.figure()
ax = fig.gca(projection='3d")

ax.plot surface(xx, yy, ff, cmap='viridis')

Out[29]: <mpl toolkits.mplot3d.art3d.Poly3DCollection at 0x7fc77dalfld0>

Singular value decomposition of any matrix (The
decomposition to end all decompositions)

+ For any matrix A € R™" (even non-square), the singular value decomposition is:
A=UzvT



In [30]:

where U € R™™ and V € R"™" are orthogonal matrices and = € R™" is a diagonal
(though not necessarily square) matrix.

« Often in notation, it is assumed that the diagonal of X, denoted ¢ is ordered by decreasing
values, i.e., 01 =2 05,> =+ 2 0.

» o are known as the singular values and U and V' are known as the left singular vectors and
the right singular vectors respectively.

rng = np.random.RandomState(0)
A = np.arange(6).reshape(2, 3)
print('A', A.shape)

print(A)

# Note returns VT (i.e. transpose) rather than V
U, s, Vt = np.linalg.svd(A, full matrices=True)

# Convert singular vector to matrix
Sigma = np.zeros_ like(A, dtype=float)
Sigma[:2, :2] = np.diag(s)

print('U', U.shape)
print('Sigma', Sigma.shape)
print('Vvt', Vt.shape)

A reconstructed = np.matmul(U, np.matmul(Sigma, Vt))
print('Are all entries equal up to machine precision?')
print('Yes' if np.allclose(A, A reconstructed) else 'No')

A (2, 3)

([0 1 2]

[3 4 5]]

U (2, 2)

Sigma (2, 3)

vt (3, 3)

Are all entries equal up to machine precision?
Yes

Rank rank(A) is the number of linearly independent
columns
» Consider an example of two equations with two unknowns (Is there a unique solution?):

= 2x+3y=0
» 4x+6y=1

Similar to a matrix A = [i Zl , hotice "redundancy"

e SVD -> Rank = Number of non-zero singular values
e fA e R Aisnot singular if and only if rank(A) = d.
Simplest case is rank 1 matrix: xyT (show on board)
= Notice difference from inner product, denoted as XTy
. XyT is also known as the outer product of two vectors



In

[31]:

Matrix multiplication can be seen as a sum of rank 1

matrices

« AB= Z;i=1 A.;B; ., where A.; is the i-th column of A and B; . is the i-th row of B

A = np.arange(6).reshape(2, 3)
print(A)
B = -np.arange(6).reshape(3, 2)
print (B)

AB _sum = np.zeros((2, 2))
for acol, brow in zip(A.T, B):
AB sum += np.outer(acol, brow)

print('AB sum formula')
print (AB_sum)

print('AB standard')
AB = np.matmul(A, B)
print (AB)

[[0 1 2]
[3 4 5]]
[[ 0 -1]
[-2 -3]
[-4 -5]]1
AB sum formula
[[-10. -13.]
[-28. -40.]]
AB standard
[[-10 -13]
[-28 -401]]

SVD provides powerful interpretation of matrix as sum of

rank one matrices

rank(A)

A= UEVT = Z G,-lliVlT
i=1

» SVD can be used to solve the following matrix approximation problem:
mfi;n |[A— B|lp st rank(B)<r

where || A||  is the Frobenius norm, or just like the #,-norm but consider the matrix as a long

vector.
= Example:

IAllF =

:

= ”[a’ b’ ¢, d]”Z
F

.




In [32]: from sklearn.datasets import load sample image
china = load sample image( 'china.jpg')
gray china = china[:,:,0]/255.0
print('china matrix', gray china.shape)
#print(gray china)

U, s, Vt = np.linalg.svd(gray china)
Sigma = np.zeros_ like(gray china, dtype=float)
Sigma[:427, :427] = np.diag(s)

china matrix (427, 640)

In [33]: max rank = np.min(gray china.shape)

rank_arr (L, 2, 4, 8, 16, 32, 64, 128, max_rank]

fig, axes = plt.subplots(3, 3, figsize=(len(rank arr)*2, 3*4))

for r, ax in zip(rank arr, axes.ravel()):
china approx = np.matmul(U[:, :r], np.matmul(Sigma[:r,:r], Vt[:r, :]))
compression = r/max rank
ax.imshow(china approx, cmap='gray')
ax.set title('Rank=%d, Compression=%.1f%%' % (r, compression*100))

Rank=1, Compression=0.2%

Rank=2, Compression=0.5% Rank=4, Compression=0.9%
T

200 300 400 500 100 200 300 400 500 100 200 300 400 500 600
Rank=8, Compression=1.9% Rank=16, Compression=3.7% Rank=32, Compression=7.5%
14 l| T

100 200 300 400 500 100 200 300 400 500

100 200 300 400 500 600
Rank=64, Compression=15.0% Rank=128, Compression=30.0% Rank=427, Compression=100.0%

Usually the most important information is in the first few
singular values



In [34]: # The most Important components are
plt.plot(s,'.")

Out[34]: [<matplotlib.lines.Line2D at 0x7fc77ef£91898>]

300 1

250 1

200 1

150 1

100 1

Determinant det(A) (of square matrix) is the
product of eigenvalues A

det(A) = |A| = H/l,-

» Absolute value of determinant roughly measures how much the matrix expands or contracts
space

» Example: if determinant is 0, then compresses vectors onto a smaller subspace

« Example: if determinant is 1, then volume is preserved (how is this different than orthogonal
matrix?)



In [35]:

In [36]:

A = np.arange(4).reshape(2,2)
print('A")

print(A)

print('prod of eigenvalues')
lam, Q = np.linalg.eig(A)
print(np.prod(lam))
print('det(A)")
print(np.linalg.det(A))

A
([0 1]
[2 31]
prod of eigenvalues
-2.0
det (A)
-2.0

Trace Tr(A) operation

» Trace is just the sum of the diagonal elements of a matrix

d

Tr(A) = ) a;

i=1

» Most useful property is rotational equivalence:
Tr(ABC) = Tr(CAB) = Tr(BCA)
 In particular, (even if different dimensions)
Tr(AB) = Tr(BA)

A = np.arange(2*3).reshape(2,3)

B = A.copy().T

print('AB')

print(np.matmul (A, B))
print('Tr(AB) ')
print(np.trace(np.matmul (A, B)))
print('Tr(BA) ")
print(np.trace(np.matmul(B, A)))
print('Tr(A"T B"T)")
print(np.trace(np.matmul(A.T, B.T)))
print('Tr(B"T A"T)"')
print(np.trace(np.matmul(B.T, A.T)))

AB
[[ 5 14]
[14 507]

Tr (AB)

55

Tr(BA)

55

Tr(A"T B"T)

55

Tr(B*T A"T)

55






