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Motivation: Vanishing gradients for generator 
caused by a discriminator that is “too good”

▸Vanishing gradient means ∇!𝑉 𝐷, 𝐺 ≈ 0.
▸Gradient updates do not improve 𝐺

▸Theoretically, this is an issue of JSD

▸Practically, careful balance during training required:
▸Optimizing 𝐷 too much leads to vanishing gradient
▸But training too little means it is not close to JSD

David I. Inouye 1

From: https://developers.google.com/machine-learning/gan/problems

Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. 
In International conference on machine learning (pp. 214-223). PMLR.



Wasserstein GAN: Better gradient values and 
better convergence (better stability)

▸Better gradients even after 
significant training 
▸Convergent training even 
without batch 
normalization
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Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. 
In International conference on machine learning (pp. 214-223). PMLR.



Outline of Wasserstein GANs

▸Preliminaries
▸Optimal transport (OT) and Monge problem
▸Wasserstein distribution distance based on OT
▸Lipschitz continuous functions

▸WGAN adversarial objective
▸Wasserstein distance as maximization problem
▸Comparison to standard GAN objective

▸WGAN algorithms
▸Clipping algorithm (original WGAN)
▸Gradient penalty algorithm
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What is Optimal Transport?

▸The natural geometry for 
probability distributions.

▸How close are two 
distributions?

▸Which distribution is 
between two distributions?

▸What is the shortest path 
between two distributions?
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Figures from Marco Cuturi & Justin M Solomon. A Primer on Optimal Transport, NeurIPS Tutorial, 2017.



OT Monge map problem: Find the minimum (optimal) 
transportation plan between two distributions

▸We want a map (i.e., a function) that moves the 
mass from the mountain to fill the hole (exactly)

David I. Inouye 5



OT Monge map problem: Find the minimum (optimal) 
transportation plan between two distributions

▸One plan for showing movement of parts of the 
mass

David I. Inouye 6



OT Monge map problem: Find the minimum (optimal) 
transportation plan between two distributions

▸Better transport plan if using squared Euclidean 
cost
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OT Monge map problem: Find the optimal 
transportation plan between two distributions

▸We denote the source distribution by 𝑋 ∼ 𝑝!
and the target distribution by 𝑌 ∼ 𝑝".  
▸𝑝! is like the mound of dirt
▸𝑝" is like the hole in the ground

▸The OT Monge problem can be formulated as 
the optimization problem

min
#
𝔼$! 𝑐 𝑥, 𝑇 𝑥

s. t. 𝑝# ! = 𝑝"
▸Where the constraint makes sure that the 

transformed source distribution is aligned with target 
distribution (i.e., the moved dirt fills the hole exactly).
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The Wasserstein-1 distribution distance can be 
derived from the solution to this OT problem

▸The Wasserstein-1 distance is defined as:

𝑊% 𝑝! , 𝑝" =
min
#
𝔼$! 𝑥 − 𝑇 𝑥 &

s. t. 𝑝# ! = 𝑝"

▸This is merely the optimal value of the Monge 
problem with 𝑐 𝑥, 𝑇 𝑥 = 𝑥 − 𝑇 𝑥 &

▸Other similar Wasserstein distances can be 
defined such as Wasserstein-2
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Comparison of Wasserstein distance to JSD for 
disjoint uniform distributions in 1D

▸Suppose both 
distributions are on a 
line segment in 2D
▸JSD gives no 

information
▸Wasserstein (also 

known as Earth Mover 
distance) gives nice 
information

▸Wasserstein distance 
gives how far you 
need to move the line
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𝜃 = distance between
line distributions

Figure from Arjovsky, M., Chintala, S., & Bottou, L. 
(2017, July). Wasserstein generative adversarial 
networks. In International conference on machine 
learning (pp. 214-223). PMLR.

𝑝! 𝑝"



Preliminaries for WGAN: 
What is a Lipschitz smooth function?

▸Informally, a Lipschitz 
continuous function means 
that the function does not 
change too quickly
▸Intuitively, a double cone 
whose origin can be moved 
along the function so that 
the whole function always 
stays outside the double 
cone
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https://en.wikipedia.org/wiki/Lipschitz_continuity



Preliminaries for WGAN: 
What is a Lipschitz smooth function?

▸Formally, the slope of the line connecting any two points on the 
function is bounded

𝑓 𝑥1 − 𝑓 𝑥2 1

𝑥1 − 𝑥2 1
≤ 𝐾

▸If the function is continuously differentiable, then 
∇3𝑓 𝑥 1 ≤ 𝐾, ∀𝑥

▸Examples
▸𝑓 𝑥 = 𝑎𝑥, with 𝐾 = 𝑎
▸𝑓 𝑥 = 𝑥 , with 𝐾 = 1
▸𝑓 𝑥 = sin 𝑥 , with 𝐾 = 1

▸Counterexamples
▸𝑓 𝑥 = 𝑥!
▸𝑓 𝑥 = exp 𝑥

▸𝑓 𝑥 = 1, if 𝑥 ≥ 0
0, otherwise
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Wasserstein GAN first reformulates the 
minimization over 𝑇 to maximization over 𝑓

▸The original Wasserstein problem:

𝑊" 𝑝# , 𝑝$ =
min
%
𝔼&" 𝑥 − 𝑇 𝑥 "

s. t. 𝑝% # = 𝑝$

▸The equivalent dual problem (Kantorovich-Rubinstein duality):

𝑊" 𝑝# , 𝑝$ =
max
'
𝔼&" 𝑓 𝑥 − 𝔼&# 𝑓 𝑦

s. t. 𝑓 ( ≤ 1
▸Where 𝑓 4 ≤ 1 means the Lipschitz constant of 𝑓 is less than 1

▸Very informally, this switches the objective with the 
constraints and vice versa
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Villani, C. (2009). Optimal transport: old and new (Vol. 338, p. 23). Berlin: Springer.
Marco Cuturi. (2019). A Primer on Optimal Transport Part 2. Accessed on 11/4/2021. https://www.youtube.com/watch?v=R49Xb9eAUBA

https://www.youtube.com/watch?v=R49Xb9eAUBA


Wasserstein GAN first reformulates the 
minimization over 𝑇 to maximization over 𝑓

▸Wasserstein-1 dual problem:

𝑊" 𝑝#, 𝑝$ =
max
'
𝔼&! 𝑓 𝑥 − 𝔼&" 𝑓 𝑦

s. t. 𝑓 ( ≤ 1

▸Compare with JSD maximization problem:

𝐽𝑆𝐷 𝑝#, 𝑝$ =
max
)

𝔼&! log𝐷 𝑥 + 𝔼&" log 1 − 𝐷 𝑦

s. t. 𝐷: ℝ* → 0,1
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Putting it all together for the final adversarial 
min-max problem of Wasserstein GAN

▸Wasserstein GAN objective 
min
+
max
'
𝔼&#$%$ 𝑓 𝑥 − 𝔼&& 𝑓 𝐺 𝑧

s. t. 𝑓 ( ≤ 1

▸Original (JSD) GAN objective

min
+
max
)

𝔼,∼&'()( log𝐷 𝑥 + 𝔼.∼&& log 1 − 𝐷 𝐺 𝑧

s. t. 𝐷: ℝ* → 0,1
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Comparison of Wasserstein distance to JSD in 1D

▸This Lipschitz 
constraint rather than 
the classifier 
constraint produces 
better gradients

▸No balancing of 
training objective 
required (in theory)
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Key question: 
How do we enforce the Lipschitz constraint?

▸Clip the parameter weights
▸Why would this partially work?
▸If all weights are bounded, then the Lipschitz constant is bounded.
▸If the Lipschitz constant is bounded, it is equivalent to scaled Lipschitz 

constraint
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Algorithm from Arjovsky, M., Chintala, 
S., & Bottou, L. (2017, July). 
Wasserstein generative adversarial 
networks. In International conference 
on machine learning (pp. 214-223). 
PMLR.



Better idea: Empirically encourage this constraint 
by adding a penalty term

▸Original problem:
min
!

max
+: + /-.

𝔼/0121 𝑓 𝑥 − 𝔼/3 𝑓 𝐺 𝑧
▸Relaxed Lipschitz constraint via gradient penalty

min
!
max
+
𝔼/0121 𝑓 𝑥 − 𝔼/3 𝑓 𝐺 𝑧

−𝜆𝔼/45 ∇0𝑓 3𝑥 1 − 1 1

▸For 𝑝 20, they use interpolated samples between real 
and fake samples:

3𝑥 = 𝜖𝑥 + 1 − 𝜖 𝐺 𝑧
▸Where 𝑥 ∼ 𝑝", 𝑧 ∼ 𝑝#, 𝜖 ∼ Uniform 0,1
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Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of 
wasserstein gans. In Advances in neural information processing systems (pp. 5767-5777).



How do we implement the gradient penalty?

▸Key problem: We don’t know gradients in closed-
form so how do we compute the objective?
▸First note that backprop itself is a computation!
▸Solution: Use autograd to compute gradient and 
then backprop through that (gradient of gradient)
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Algorithm from Gulrajani, I., Ahmed, F., 
Arjovsky, M., Dumoulin, V., & Courville, 
A. C. (2017). Improved training of 
wasserstein gans. In Advances in neural 
information processing systems (pp. 
5767-5777).



Outline of Wasserstein GANs

▸Preliminaries
▸Optimal transport (OT) and Monge problem
▸Wasserstein distribution distance based on OT
▸Lipschitz continuous functions

▸WGAN adversarial objective
▸Wasserstein distance as maximization problem
▸Comparison to standard GAN objective

▸WGAN algorithms
▸Clipping algorithm (original WGAN)
▸Gradient penalty algorithm
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Additional resources for optimal transport and 
Wasserstein distance

▸A primer on Optimal Transport slides:
▸https://nips.cc/Conferences/2017/Schedule?showEvent=8736
▸Alternative link: 

https://www.dropbox.com/s/55tb2cf3zipl6xu/aprimeronOT.pd
f?dl=0

▸Optimal transport tutorial videos
▸Video Part 1 -

https://www.youtube.com/watch?v=6iR1E6t1MMQ
▸Video Part 2 -

https://www.youtube.com/watch?v=R49Xb9eAUBA
▸Video Part 3 -

https://www.youtube.com/watch?v=SZHumKEhgtA
▸Additional resources
▸https://optimaltransport.github.io/
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https://www.dropbox.com/s/55tb2cf3zipl6xu/aprimeronOT.pdf?dl=0
https://www.dropbox.com/s/55tb2cf3zipl6xu/aprimeronOT.pdf?dl=0
https://www.youtube.com/watch?v=6iR1E6t1MMQ
https://www.youtube.com/watch?v=R49Xb9eAUBA
https://www.youtube.com/watch?v=SZHumKEhgtA
https://optimaltransport.github.io/

