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Motivation: Vanishing gradients for generator
caused by a discriminator that is “too good”

From: https://developers.google.com/machine-learning/gan/problems

> Vanishing gradient means V.V (D, G) = 0.
» Gradient updates do not improve G

» Theoretically, this is an issue of JSD
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» Practically, careful balance during training required:
» Optimizing D too much leads to vanishing gradient
> But training too little means it is not close to JSD

Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks.
In International conference on machine learning (pp. 214-223). PMLR.
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Wasserstein GAN: Better gradient values and
better convergence (better stability)

1.0

> Better gradients even after | =
significant training

> Convergent training even

without batch
normalization
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Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.

Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks.
In International conference on machine learning (pp. 214-223). PMLR.

David I. Inouye



Outline of Wasserstein GANs

> Preliminaries
» Optimal transport (OT) and Monge problem
> Wasserstein distribution distance based on OT
> Lipschitz continuous functions

> WGAN adversarial objective

> Wasserstein distance as maximization problem
» Comparison to standard GAN objective

» WGAN algorithms
> Clipping algorithm (original WGAN)
> Gradient penalty algorithm
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What is Optimal Transport?

> The natural geometry for
probability distributions.

Wasserstein

» How close are two Baryeenter

distributions?

» Which distribution is
between two distributions?

> What is the shortest path
between two distributions?

Figures from Marco Cuturi & Justin M Solomon. A Primer on Optimal Transport, NeurIPS Tutorial, 2017.

David I. Inouye 4



OT Monge map problem: Find the minimum (optimal)
transportation plan between two distributions

» We want a map (i.e., a function) that moves the
mass from the mountain to fill the hole (exactly)
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OT Monge map problem: Find the minimum (optimal)
transportation plan between two distributions

» One plan for showing movement of parts of the
mass




OT Monge map problem: Find the minimum (optimal)
transportation plan between two distributions

» Better transport plan if using squared Euclidean
cost
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OT Monge map problem: Find the optimal
transportation plan between two distributions

> We denote the source distribution by X ~ py
and the target distribution by Y ~ py.

> px is like the mound of dirt
> py is like the hole in the ground

> The OT Monge problem can be formulated as
the optimization problem

min E; lc(x, T(x))]

.. Drx) = Py
> Where the constraint makes sure that the
transformed source distribution is aligned with target
distribution (i.e., the moved dirt fills the hole exactly).
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The Wasserstein-1 distribution distance can be
derived from the solution to this OT problem

» The Wasserstein-1 di_stance is defined as:
minE, [|[x — T(x)llz]>

Wi(p ,p)=(T
ey S.L. Prx) =Py

> This is merely the optimal value of the Monge
problem with c(x, T(x)) = ||lx — T(x)||,

» Other similar Wasserstein distances can be
defined such as Wasserstein-2
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Comparison of Wasserstein distance to JSD for
disjoint uniform distributions in 1D

Px Py

6@ = distance between
line distributions

> Suppose both
distributions are on a
line segment in 2D

> JSD gives no
information

» Wasserstein (also
known as Earth Mover
distan ce) gives nice o) T BT viot 5 ot o] o s

o . gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.
information

> Wasserstein distance
gives how far you
. Figure from Arjovsky, M., Chintala, S., & Bottou, L.
n eed tO m Ove t h e I | n e (2017, July). Wasserstein generative adversarial

networks. In International conference on machine
learning (pp. 214-223). PMLR.
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Preliminaries for WGAN:
What is a Lipschitz smooth function?

> Informally, a Lipschitz
continuous function means
that the function does not
change too quickly

> Intuitively, a double cone /
whose origin can be moved /-
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along the function so that
the whole function always
stays outside the double
cone

https://en.wikipedia.org/wiki/Lipschitz_continuity
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Preliminaries for WGAN:
What is a Lipschitz smooth function?

> Formally, the slope of the line connecting any two points on the
function is bounded

If (x2) — fFxIl; <

oz — x4l2
> If the function is continuously differentiable, then
IV f Ol =K,  Vx

K

> Examples

» f(x) = ax,withK = a

» f(x) = |x|,withK =1

» f(x) = sin(x), withK =1
» Counterexamples

> () =x*

> f(x) = exp(x)

>f(x)={1’ ifoO}

0, otherwise
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Wasserstein GAN first reformulates the
minimization over T to maximization over f

> The original Wasserstein prg)blem:
min E, [|lx — T(x)II1]>

Wi (p ,p)=(T
LY s.T. Prx) =Py

» The equivalent dual problem (Kantorovich-Rubinstein duality):
max E,, [f ()] — Ep, [f (¥)]
p p
Wi (ox, py) = ( f 3 Y )
s.tlfll, =1

> Where ||f ||, < 1 means the Lipschitz constant of f is less than 1

> Very informally, this switches the objective with the
constraints and vice versa

Villani, C. (2009). Optimal transport: old and new (Vol. 338, p. 23). Berlin: Springer.
Marco Cuturi. (2019). A Primer on Optimal Transport Part 2. Accessed on 11/4/2021. https://www.youtube.com/watch?v=R49Xb9eAUBA
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https://www.youtube.com/watch?v=R49Xb9eAUBA

Wasserstein GAN first reformulates the
minimization over T to maximization over f

> Wasserstein-1 dual problem:

max B, [f ()] — E,, [f ()]
_ f Px Py
Wi (px, vy) ( st lIfll, <1 )

> Compare with JSD maximization problem:

max E,. [logD(x)] + Ep, [log(l — D()’))])
s.t. D:R% - [0,1]

]SD(px, pY) — (




Putting it all together for the final adversarial
min-max problem of Wasserstein GAN

» Wasserstein GAN objective
min m;ix [Epdata [f(X)] o IEpz [f(G(Z))]

G
s.tlIfll, <1

> Original (JSD) GAN objective

minmaxE,._, . [logD(x)|+E,-p, _108 (1 — D(G(Z)))]
s.t. D:R% - [0,1]

G D




Comparison of Wasserstein distance to JSD in 1D

> This Lipschitz
constraint rather than

the classifier | |
constraint produces |, \, " bensity of fake
better gradients \ woan cri

> No balancing of

training objective Y ety b
reqUired (in theory) R V1,’,]]“,2;:1;)[2(1\'\([\?%
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Key question:
How do we enforce the Lipschitz constraint?

> Clip the parameter weights

> Why would this partially work?
> If all weights are bounded, then the Lipschitz constant is bounded.

> If the Lipschitz constant is bounded, it is equivalent to scaled Lipschitz
constraint

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O-

Require: : «, the learning rate. c, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.
1: while 6 has not converged do

2: for t = 0, ..., Neritic do

3: Sample {z()}™  ~ P, a batch from the real data.

4: Sample {z(M}, ~ p(2) a batch of prior samples.

3: 9w < Vy [% 2121 fw(x(z)) - % 2111 fw(.%(z(z)))]

6: w < w + a - RMSProp(w, g,,)

£ dwf(_ clip(w, —¢, ¢) Algorithm from Arjovsky, M., Chintala,

8 endlor H1m _ S., & Bottou, L. (2017, July).

9:  Sample {z ) }z’:%z ~ p(z) a ](Q;JVCCh of prior samples. Wasserstein generative adversarial
10: g = =V D iy fulge(2™)) networks. In International conference
11: 0« 0 —o-RMSProp(f, ge) on machine learning (pp. 214-223).
12: end while PMLR.
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Better idea: Empirically encourage this constraint
by adding a penalty term

> Original problem:

mG;nf ﬁ?ellx_l E,, . Lf(x)]— [f(G(Z))

» Relaxed Lipschitz constraint via gradlent penalty

min max Epgaca f (O] = Ep, | f(G(2))]

—AEp, [(IVief (D)2 — 1)?]

> For pz, they use interpolated samples between real
and fake samples:
X=ex+(1—-¢€)G(2)
> Where x ~ py,z ~ p,, € ~ Uniform([0,1])

Gulrajani, |., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of
wasserstein gans. In Advances in neural information processing systems (pp. 5767-5777).

David I. Inouye




How do we implement the gradient penalty?

> Key problem: We don’t know gradients in closed-
form so how do we compute the objective?

> First note that backprop itself is a computation!

> Solution: Use autograd to compute gradient and
then backprop through that (gradient of gradient)

Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, nitic = 5, @ =
0.0001, B; =0, B2 = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritic, the batch size m, Adam hyperparameters «, 31, Bs.
Require: initial critic parameters wy, initial generator parameters 6.
1: while 6 has not converged do
2: fort = 1,...,ncﬁﬁc do

3: fori=1,..,mdo

4: Sample real data  ~ PP,., latent variable z ~ p(z), a random number € ~ U0, 1].

5: T <+ GQ(Z)

6: T+ ex+ (l—e€)x

7: L® Dy (&) — Dy(x) + A(|VaDw(£)]|2 — 1) Algorithm from Gulrajani, I., Ahmed, F.,
8: end for L wm () Arjovsky, M., Dumoulin, V., & Courville,
1(9)§ end’l?O:'_ Adam (Ve 7 3 Jimy L, w, 0, 1, 2) A. C. (2017). Improved training of

11:  Sample a batch of latent variables {z()}, ~ p(2). \.NasserSFe'n gans. m Advances in neural
12: 0 — Adam(VH% S —Dw(Go(2)),9,a, 81, Ba) information processing systems (pp.

13: end while 5767-5777).
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Additional resources for optimal transport and
Wasserstein distance

> A primer on Optimal Transport slides:
» https://nips.cc/Conferences/2017/Schedule?showEvent=8736
> Alternative link:
I]g?tg?s(:)//www.dropbox.com/s/55tb2cf32ipI6xu/aprimeronOT.pd
» Optimal transport tutorial videos

> Video Part 1 -
https://www.youtube.com/watch?v=6iR1E6t1MMQ

> Video Part 2 -
https://www.youtube.com/watch?v=R49Xb9eAUBA

> Video Part 3 -
https://www.youtube.com/watch?v=SZHumKEhgtA

» Additional resources
» https://optimaltransport.github.io/
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https://www.dropbox.com/s/55tb2cf3zipl6xu/aprimeronOT.pdf?dl=0
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https://www.youtube.com/watch?v=6iR1E6t1MMQ
https://www.youtube.com/watch?v=R49Xb9eAUBA
https://www.youtube.com/watch?v=SZHumKEhgtA
https://optimaltransport.github.io/

