
Adapted from PyTorch tutorial
https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.h
(https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.
originally accessed on 03-28-2023

The previous task was sequence -> class (classification). This task is class -> sequence
(generation).

In [1]:

NLP From Scratch: Generating Names with a
Character-Level RNN ¶
Author: Sean Robertson (https://github.com/spro/practical-pytorch)

This is our second of three tutorials on "NLP From Scratch". In the first tutorial 
</intermediate/char_rnn_classification_tutorial>  we used a RNN to classify
names into their language of origin. This time we'll turn around and generate names from
languages.

::

> python sample.py Russian RUS
Rovakov
Uantov
Shavakov

> python sample.py German GER
Gerren
Ereng
Rosher

> python sample.py Spanish SPA
Salla
Parer
Allan

> python sample.py Chinese CHI
Chan
Hang
Iun

# For tips on running notebooks in Google Colab, see
# https://pytorch.org/tutorials/beginner/colab
%matplotlib inline

https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html
https://github.com/spro/practical-pytorch


We are still hand-crafting a small RNN with a few linear layers. The big difference is instead of
predicting a category after reading in all the letters of a name, we input a category and output
one letter at a time. Recurrently predicting characters to form language (this could also be done
with words or other higher order constructs) is often referred to as a "language model".

Recommended Reading:

I assume you have at least installed PyTorch, know Python, and understand Tensors:

https://pytorch.org/ (https://pytorch.org/) For installation instructions
:doc: /beginner/deep_learning_60min_blitz  to get started with PyTorch in general
:doc: /beginner/pytorch_with_examples  for a wide and deep overview
:doc: /beginner/former_torchies_tutorial  if you are former Lua Torch user

It would also be useful to know about RNNs and how they work:

The Unreasonable Effectiveness of Recurrent Neural Networks
(https://karpathy.github.io/2015/05/21/rnn-effectiveness/)_ shows a bunch of real life
examples
Understanding LSTM Networks (https://colah.github.io/posts/2015-08-Understanding-
LSTMs/)_ is about LSTMs specifically but also informative about RNNs in general

I also suggest the previous tutorial,
:doc: /intermediate/char_rnn_classification_tutorial

Preparing the Data
.. Note:: Download the data from here (https://download.pytorch.org/tutorial/data.zip) and extract
it to the current directory.

See the last tutorial for more detail of this process. In short, there are a bunch of plain text files

https://pytorch.org/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://download.pytorch.org/tutorial/data.zip


In [2]:

Creating the Network
This network extends the last tutorial's RNN_ with an extra argument for the category tensor,
which is concatenated along with the others. The category tensor is a one-hot vector just like the
letter input.

# categories: 18 ['Czech', 'German', 'Arabic', 'Japanese', 'Chinese', 
'Vietnamese', 'Russian', 'French', 'Irish', 'English', 'Spanish', 'Gree
k', 'Italian', 'Portuguese', 'Scottish', 'Dutch', 'Korean', 'Polish']
O'Neal

from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os
import unicodedata
import string
 
all_letters = string.ascii_letters + " .,;'-"
n_letters = len(all_letters) + 1 # Plus EOS marker
 
def findFiles(path): return glob.glob(path)
 
# Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.co
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )
 
# Read a file and split into lines
def readLines(filename):
    with open(filename, encoding='utf-8') as some_file:
        return [unicodeToAscii(line.strip()) for line in some_file]
 
# Build the category_lines dictionary, a list of lines per category
category_lines = {}
all_categories = []
for filename in findFiles('data/names/*.txt'):
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines
 
n_categories = len(all_categories)
 
if n_categories == 0:
    raise RuntimeError('Data not found. Make sure that you downloaded data
        'from https://download.pytorch.org/tutorial/data.zip and extract 
        'the current directory.')
 
print('# categories:', n_categories, all_categories)
print(unicodeToAscii("O'Néàl"))



We will interpret the output as the probability of the next letter. When sampling, the most likely
output letter is used as the next input letter.

I added a second linear layer o2o  (after combining hidden and output) to give it more muscle to
work with. There's also a dropout layer, which randomly zeros parts of its input
(https://arxiv.org/abs/1207.0580)_ with a given probability (here 0.1) and is usually used to fuzz
inputs to prevent overfitting. Here we're using it towards the end of the network to purposely add
some chaos and increase sampling variety.

.. figure:: https://i.imgur.com/jzVrf7f.png (https://i.imgur.com/jzVrf7f.png) :alt:

In [3]:

Training

Preparing for Training
First of all, helper functions to get random pairs of (category, line):

import torch
import torch.nn as nn
 
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
 
        self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidd
        self.i2o = nn.Linear(n_categories + input_size + hidden_size, outp
        self.o2o = nn.Linear(hidden_size + output_size, output_size)
        self.dropout = nn.Dropout(0.1)
        self.softmax = nn.LogSoftmax(dim=1)
 
    def forward(self, category, input, hidden):
        input_combined = torch.cat((category, input, hidden), 1)
        hidden = self.i2h(input_combined)
        output = self.i2o(input_combined)
        output_combined = torch.cat((hidden, output), 1)
        output = self.o2o(output_combined)
        output = self.dropout(output)
        output = self.softmax(output)
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

https://arxiv.org/abs/1207.0580
https://i.imgur.com/jzVrf7f.png


In [4]:

For each timestep (that is, for each letter in a training word) the inputs of the network will be
(category, current letter, hidden state)  and the outputs will be (next 
letter, next hidden state) . So for each training set, we'll need the category, a set of
input letters, and a set of output/target letters.

Since we are predicting the next letter from the current letter for each timestep, the letter pairs
are groups of consecutive letters from the line - e.g. for "ABCD<EOS>"  we would create ("A",
"B"), ("B", "C"), ("C", "D"), ("D", "EOS").

.. figure:: https://i.imgur.com/JH58tXY.png (https://i.imgur.com/JH58tXY.png) :alt:

The category tensor is a one-hot tensor (https://en.wikipedia.org/wiki/One-hot)_ of size <1 x 
n_categories> . When training we feed it to the network at every timestep - this is a design
choice, it could have been included as part of initial hidden state or some other strategy.

In [5]:

For convenience during training we'll make a randomTrainingExample  function that fetches
a random (category, line) pair and turns them into the required (category, input, target) tensors.

import random
 
# Random item from a list
def randomChoice(l):
    return l[random.randint(0, len(l) - 1)]
 
# Get a random category and random line from that category
def randomTrainingPair():
    category = randomChoice(all_categories)
    line = randomChoice(category_lines[category])
    return category, line

# One-hot vector for category
def categoryTensor(category):
    li = all_categories.index(category)
    tensor = torch.zeros(1, n_categories)
    tensor[0][li] = 1
    return tensor
 
# One-hot matrix of first to last letters (not including EOS) for input
def inputTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li in range(len(line)):
        letter = line[li]
        tensor[li][0][all_letters.find(letter)] = 1
    return tensor
 
# LongTensor of second letter to end (EOS) for target
def targetTensor(line):
    letter_indexes = [all_letters.find(line[li]) for li in range(1, len(l
    letter_indexes.append(n_letters - 1) # EOS
    return torch.LongTensor(letter_indexes)

https://i.imgur.com/JH58tXY.png
https://en.wikipedia.org/wiki/One-hot


In [6]:

Training the Network
In contrast to classification, where only the last output is used, we are making a prediction at
every step, so we are calculating loss at every step.

The magic of autograd allows you to simply sum these losses at each step and call backward at
the end.

In [7]:

To keep track of how long training takes I am adding a timeSince(timestamp)  function
which returns a human readable string:

# Make category, input, and target tensors from a random category, line p
def randomTrainingExample():
    category, line = randomTrainingPair()
    category_tensor = categoryTensor(category)
    input_line_tensor = inputTensor(line)
    target_line_tensor = targetTensor(line)
    return category_tensor, input_line_tensor, target_line_tensor

criterion = nn.NLLLoss()
 
learning_rate = 0.0005
 
def train(category_tensor, input_line_tensor, target_line_tensor):
    target_line_tensor.unsqueeze_(-1)
    hidden = rnn.initHidden()
 
    rnn.zero_grad()
 
    loss = 0
 
    for i in range(input_line_tensor.size(0)):
        output, hidden = rnn(category_tensor, input_line_tensor[i], hidden
        l = criterion(output, target_line_tensor[i])
        loss += l
 
    loss.backward()
 
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate)
 
    return output, loss.item() / input_line_tensor.size(0)



In [8]:

Training is business as usual - call train a bunch of times and wait a few minutes, printing the
current time and loss every print_every  examples, and keeping store of an average loss per
plot_every  examples in all_losses  for plotting later.

import time
import math
 
def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)



In [9]:

Plotting the Losses
Plotting the historical loss from all_losses shows the network learning:

0m 12s (5000 5%) 2.8813
0m 26s (10000 10%) 2.8088
0m 39s (15000 15%) 2.4395
0m 52s (20000 20%) 2.9785
1m 7s (25000 25%) 2.8687
1m 20s (30000 30%) 2.5995
1m 38s (35000 35%) 2.6571
1m 53s (40000 40%) 3.1403
2m 6s (45000 45%) 2.3654
2m 20s (50000 50%) 2.7594
2m 33s (55000 55%) 2.0739
2m 47s (60000 60%) 1.9114
3m 0s (65000 65%) 2.2673
3m 13s (70000 70%) 2.0595
3m 27s (75000 75%) 1.8569
3m 40s (80000 80%) 2.2200
3m 53s (85000 85%) 3.4743
4m 6s (90000 90%) 2.1851
4m 19s (95000 95%) 2.1491
4m 32s (100000 100%) 2.5035

rnn = RNN(n_letters, 128, n_letters)
 
n_iters = 100000
print_every = 5000
plot_every = 500
all_losses = []
total_loss = 0 # Reset every plot_every iters
 
start = time.time()
 
for iter in range(1, n_iters + 1):
    output, loss = train(*randomTrainingExample())
    total_loss += loss
 
    if iter % print_every == 0:
        print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iter
 
    if iter % plot_every == 0:
        all_losses.append(total_loss / plot_every)
        total_loss = 0



In [10]:

Sampling the Network
To sample we give the network a letter and ask what the next one is, feed that in as the next
letter, and repeat until the EOS token.

Create tensors for input category, starting letter, and empty hidden state
Create a string output_name  with the starting letter
Up to a maximum output length,

Feed the current letter to the network
Get the next letter from highest output, and next hidden state
If the letter is EOS, stop here
If a regular letter, add to output_name  and continue

Return the final name

.. Note:: Rather than having to give it a starting letter, another strategy would have been to
include a "start of string" token in training and have the network choose its own starting letter.

Out[10]: [<matplotlib.lines.Line2D at 0x7fcda8e5e040>]

import matplotlib.pyplot as plt
 
plt.figure()
plt.plot(all_losses)



In [11]:

Exercises
Try with a different dataset of category -> line, for example:

Fictional series -> Character name
Part of speech -> Word

Rovaki
Uakonov
Sakovov
Gare
Eren
Rour
Sara
Palla
Alara
Cang
Han
Iun

max_length = 20
 
# Sample from a category and starting letter
def sample(category, start_letter='A'):
    with torch.no_grad():  # no need to track history in sampling
        category_tensor = categoryTensor(category)
        input = inputTensor(start_letter)
        hidden = rnn.initHidden()
 
        output_name = start_letter
 
        for i in range(max_length):
            output, hidden = rnn(category_tensor, input[0], hidden)
            topv, topi = output.topk(1)
            topi = topi[0][0]
            if topi == n_letters - 1:
                break
            else:
                letter = all_letters[topi]
                output_name += letter
            input = inputTensor(letter)
 
        return output_name
 
# Get multiple samples from one category and multiple starting letters
def samples(category, start_letters='ABC'):
    for start_letter in start_letters:
        print(sample(category, start_letter))
 
samples('Russian', 'RUS')
 
samples('German', 'GER')
 
samples('Spanish', 'SPA')
 
samples('Chinese', 'CHI')



Country -> City
Use a "start of sentence" token so that sampling can be done without choosing a start letter
Get better results with a bigger and/or better shaped network

Try the nn.LSTM and nn.GRU layers
Combine multiple of these RNNs as a higher level network


