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Clustering applica/on:
Market segmenta/on to group customers

David I. Inouye 1

https://medium.com/analytics-vidhya/customer-segmentation-for-differentiated-
targeting-in-marketing-using-clustering-analysis-3ed0b883c18b



Clustering applications:
Discretization of colors for compression
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h"ps://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_opencv.html



Clustering applica/ons:
Unsupervised image segmenta/on
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R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods," in IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274-2282, Nov. 2012, doi: 10.1109/TPAMI.2012.120.



Another clustering application:
Clustering people in social networks
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h"ps://bigdata.oden.utexas.edu/project/graph-clustering/

Zachary’s Karate Club Network
h/ps://en.wikipedia.org/wiki/Zachary%27s_karate_club



Outline

▸Clustering applications

▸Clustering objective

▸K-means
▸Algorithm (Python demo)
▸Relation to PCA

▸Graph clustering

▸Spectral clustering
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Can you put these points into two clusters?
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How can we formalize what you can do visually?



One clustering objec0ve is to minimize the pairwise 
distances between points in the same cluster

▸Let the input dataset be 𝑥! !"#$

▸The goal of clustering is to find cluster labels 
𝑦! !"#$ , where 𝑦! ∈ 1,2, … , 𝑘

▸Given cluster labels 𝑦!, let clusters be defined:
𝒞% = 𝑥!: 𝑦! = 𝑗

▸Like MSE for regression, the most common 
clustering objective is:

min
𝒞!,⋯,𝒞"

0
%"#

)
1
𝒞%

0
*∈𝒞#, ,*∈𝒞#

𝑥 − 2𝑥 -
-
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The clustering objective can be reformulated as 
finding centers and clusters simultaneously

▸Original pairwise objecDve

min
𝒞!,⋯,𝒞"
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%"#

)
1
𝒞%

0
*∈𝒞#, ,*∈𝒞#

𝑥 − 2𝑥 -
-

▸Equivalent objecDve via free parameters 𝜇%

min
𝒞!,⋯,𝒞"
.!,⋯,."
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𝑥 − 𝜇% -
-

	
▸In general, this is an NP-hard problem to solve 

(i.e., you might have to enumerate an exponen4ally large number of possibili4es to 
solve)
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For proof, see h4ps://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture_kmeans.pdf 

https://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture_kmeans.pdf


However, if the clusters OR the centers are fixed, 
the optimization problem is simple

▸If 𝜇!, ⋯ , 𝜇"  are fixed, then the clustering 
assignment is simple:

𝑥# ∈ 𝒞$ ⇔ 𝑗 = argmin$ 𝑥# − 𝜇$ %
%

▸If 𝒞!, ⋯ , 𝒞"  are fixed, then the optimal centers 
are merely the mean:

𝜇$ =
1
𝒞$

2
&!∈𝒞"

𝑥# , ∀𝑗
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The K-means algorithm simply alternates 
between solving each of these two steps

▸Ini8alize centers 𝜇!, ⋯ , 𝜇$  randomly

▸Repeat the following un8l convergence
1. Assign points to nearest center

𝑥! ∈ 𝒞" ⇔ 𝑗 = argmin# 𝑥! − 𝜇# $
$

2. Recompute centers as mean of assigned points

𝜇# =
1
𝒞#

0
%!∈𝒞"

𝑥! , ∀𝑗
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K-means demonstration
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1. Assign

2. Compute 
centers

IniIalize centers randomly



Reformula/on of 𝑘-means objec/ve 
in terms of matrices

▸𝑦! ∈ 1,… , 𝑘 	is	the	cluster	label	for	each	instance
▸𝑧! 	is	the	corresponding	one	hot	vector	to	𝑦!

▸𝑀 =
𝜇"
⋮
𝜇#

∈ ℝ#	×&	is	the	matrix	of	mean	vectors

▸∑'("# ∑)∈𝒞! 𝑥 − 𝜇' ,
,				(Original objec/ve)

▸= ∑!("- 𝑥! − 𝜇." ,
,						(Using 𝑦! nota/on)

▸= ∑!("- 𝑥!/ − 𝑧!/𝑀 ,
,						(row	vector	form)

▸= ∑!("- ∑0("& 𝑥!0 − 𝑧!/𝑚0
,						(𝑚0	is	a	column	of	𝑀)

▸= ∑!("- ∑0("& 𝑥!0 − 𝑧!/𝑚0
,

,

▸= 𝑋 − 𝑍𝑀 1
,
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What does this look like?



Recap: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

▸PCA can be formalized as
min
K,L

𝑋M − 𝑍𝑊N
O
P

▸where	
X# = X − 𝟏$𝜇%& ∈ ℝ$×(	 centered	input	data
𝑍 ∈ ℝ$×)	 (latent	representation	or	“scores”	)
𝑊& ∈ ℝ)×(	 (principal	components)
𝑤*&𝑤+ = 0,𝑤*&𝑤* = 𝑤* , = 1, ∀𝑠, 𝑡	
orthogonal	constraint

▸SoluDon
▸𝑊& = 𝑉-:)& 	where	𝑋/ = 𝑈𝑆𝑉&	is	the	SVD	of	𝑋/
▸𝑍 = 𝑋/𝑊
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K-means rela/on to PCA:
One-hot vectors vs con/nuous vectors

▸𝑘-means clustering can be seen as reducing the 
dimensionality to 𝑘 latent categories
▸Each category can be represented by a one-hot 

vector of length 𝑘
e.g., if 𝑘 = 3, 𝑧! ∈ 1,0,0 , 0,1,0 , 0,0,1 , ∀𝑖
▸Every instance can only “belong” to one category

▸In dimensionality reduction techniques, the 
latent vectors can have non-zeros for all 𝑘 latent 
dimensions
▸e.g., if 𝑘 = 3, 𝑧! ∈ ℝ(, ∀𝑖
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K-means objective can be reformulated as seeking the 
best approximation to 𝑋 with one-hot latents

▸Original k-means objec2ve

min
𝒞2,…,𝒞3
+2,…,+3

$
#,-

.

$
%∈𝒞4

𝑥 − 𝜇# $
$

▸Equivalent to the following objec2ve

min
/,0

𝑋 − 𝑍𝑀 1
$

where	𝑍 ∈ 0,1 2×.,$
#

𝑧!# = 1, ∀𝑖

and	𝑀 ∈ ℝ.×4
▸K-means can be seen as alterna'ng between solving for 
𝑍 with 𝑀 fixed, and solving for 𝑀 with 𝑍 fixed
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While k-means is fast and can give good solu/ons 
in prac/ce, it has some issues

▸Does not always converge to the optimal/best 
solution
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While k-means is fast and can give good solutions 
in practice, it has some issues

▸Choosing the number of clusters is not obvious
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While k-means is fast and can give good solu/ons 
in prac/ce, it has some issues

▸Scaling of variables and clusters matters

David I. Inouye 18



While k-means is fast and can give good solutions 
in practice, it has some issues

▸Only linear boundaries between clusters

David I. Inouye 19



Graph-based clustering can enable non-linear 
clustering boundaries

David I. Inouye 20



How can we cluster the nodes of a network 
(a.k.a. a graph) instead of a set of points?

David I. Inouye 21

h"ps://bigdata.oden.utexas.edu/project/graph-clustering/

Zachary’s Karate Club Network
h/ps://en.wikipedia.org/wiki/Zachary%27s_karate_club



Graph clustering puts 
the nodes of a graph into clusters

▸What is a graph?

▸How do we represent a graph?
▸Adjacency matrix
▸Graph Laplacian

▸How do we use graph Laplacian to cluster?

David I. Inouye 22



A graph/network is composed of nodes and 
weighted edges between the nodes

David I. Inouye 23

10 node graph with 2 connected components.

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b


A graph can be represented 
as an adjacency matrix

▸Nodes are represented by rows/columns
▸Edges are encoded as 1s

David I. Inouye 24

h4ps://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b


The graph Laplacian is formed by subtrac/ng the 
adjacency from the degree matrix

▸The degree matrix is a diagonal matrix whose 
elements are the sum of the rows:

𝐷 = diag 𝐴1
▸Graph Laplacian is defined as:

𝐿 = 𝐷 − 𝐴
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The number of 0 eigenvalues of the Laplacian
is the number of connected components
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h4ps://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b


The Fiedler vector (2nd to last eigenvector) can be 
used to create 2 clusters

▸Intuitively, we could 0 the 2nd to 
last eigenvalue to get 2 
components instead

▸Nodes are clustered based on 
whether their values in the Fiedler 
vector

𝑦 = 1(𝑓 > 0)

▸In theory, this is known as the 
minimal cut
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Fiedler vector



Spectral clustering generalizes to 𝑘 > 2 clusters by 
taking the lowest eigenvectors as a new node 
representa0on and then doing K-means

▸We take the 𝑚-lowest eigenvectors to represent 
the data
▸Then just run K-means
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2 lowest eigenvector representations of nodes

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b


Standard K-means clustering is limited to circular 
clusters with linear boundaries between clusters
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▸K-means is based on the clustering assump8on 
of “compactness”
▸Points in a cluster are close to one another
▸Squared error objecGve within cluster

▸This assump8on may not be appropriate

h4ps://towardsdatascience.com/spectral-clustering-82d3cff3d3b7



Spectral clustering applied to vector data can be 
used to learn clusters based on “connectivity”

▸Points that are “connected”  to each other are 
clustered together
▸This allows non-circular clustering
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h4ps://towardsdatascience.com/spectral-clustering-82d3cff3d3b7



Spectral clustering: 
First create similarity graph based on data

▸K-nearest neighbor graph
▸Add edge for all k-nearest 

neighbors

▸General similarity graph
▸Compute all pairwise similarity 

between points such as:

𝑠 𝑥, 𝑦 = exp −
𝑥 − 𝑦 $

2𝜎$
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P. Veenstra, C. Cooper and S. Phelps, 
"Spectral clustering using the kNN-
MST similarity graph," 2016 8th 
Computer Science and Electronic 
Engineering (CEEC), Colchester, 
2016, pp. 222-227, doi: 
10.1109/CEEC.2016.7835917.



Spectral clustering:
Second, apply spectral clustering to resulting graph
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h4p://math.ucdenver.edu/~sborgwardt/wiki/index.php/Spectral_clust
ering

h4ps://towardsdatascience.com/spectral-clustering-
82d3cff3d3b7



Many other clustering algorithms exist
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https://scikit-learn.org/stable/modules/clustering.html


