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Edited version of PyTorch DCGAN tutorial for
MNIST
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
(https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html) Main edits: Edited the architecture
and parameters to work for MNIST instead of CelebA but kept structure otherwise the same

DCGAN Tutorial
Author: Nathan Inkawhich <https://github.com/inkawhich> __

%matplotlib inline

https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html


In [2]: from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
 
# Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
 
# Root directory for dataset
dataroot = "data/celeba"
 
# Number of workers for dataloader
workers = 2
 
# Batch size during training
batch_size = 128
 
# Spatial size of training images. All images will be resized to this
#   size using a transformer.
#image_size = 64
image_size = 32
 
# Number of channels in the training images. For color images this is 3
#nc = 3
nc = 1 
 
# Size of z latent vector (i.e. size of generator input)
nz = 100
 
# Size of feature maps in generator
#ngf = 64
ngf = 8
 
# Size of feature maps in discriminator
#ndf = 64
ndf = 8
 
# Number of training epochs



Data
We will use MNIST instead of CelebA as in the original tutorial

Random Seed:  999 

num_epochs = 5
 
# Learning rate for optimizers
lr = 0.0002
 
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
 
# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1



In [3]:

Out[3]: <matplotlib.image.AxesImage at 0x7fd73f3f3fa0>

dataset = dset.MNIST(
    'data', train=True, download=True,
   transform=transforms.Compose([
       transforms.Resize(image_size), # Resize from 28 x 28 to 32 x 32 (so 
       transforms.CenterCrop(image_size),
       transforms.ToTensor(),
       transforms.Normalize((0.5,), (0.5,))
   ])) 
 
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num_workers=workers)
 
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) 
 
# Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], pad



In [4]: # custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)



In [5]:

Generator( 
  (main): Sequential( 
    (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bi
as=False) 
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (2): ReLU(inplace=True) 
    (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), pad
ding=(1, 1), bias=False) 
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (5): ReLU(inplace=True) 
    (6): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padd
ing=(1, 1), bias=False) 

# Generator Code
class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution, state size. nz x 1 x 1
            nn.ConvTranspose2d( nz, ngf * 4, kernel_size=4, stride=1, paddi
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True), # inplace ReLU
            # current state size. (ngf*4) x 4 x 4
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # current state size. (ngf*2) x 8 x 8
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # current state size. ngf x 16 x 16
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            # current state size. nc x 32 x 32 
            # Produce number between -1 and 1, as pixel values have been no
            nn.Tanh()
        )
 
    def forward(self, input):
        return self.main(input)
 
# Create the generator
netG = Generator(ngpu).to(device)
 
# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))
 
# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netG.apply(weights_init)
 
# Print the model
print(netG)



Discriminator
As mentioned, the discriminator, , is a binary classification network that takes an image as input
and outputs a scalar probability that the input image is real (as opposed to fake). Here,  takes a
3x64x64 input image, processes it through a series of Conv2d, BatchNorm2d, and LeakyReLU
layers, and outputs the final probability through a Sigmoid activation function. This architecture can
be extended with more layers if necessary for the problem, but there is significance to the use of
the strided convolution, BatchNorm, and LeakyReLUs. The DCGAN paper mentions it is a good
practice to use strided convolution rather than pooling to downsample because it lets the network
learn its own pooling function. Also batch norm and leaky relu functions promote healthy gradient
flow which is critical for the learning process of both  and .

𝐷

𝐷

𝐺 𝐷

Discriminator Code

    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True) 
    (8): ReLU(inplace=True) 
    (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), paddi
ng=(1, 1), bias=False) 
    (10): Tanh() 
  ) 
) 



In [6]:

Discriminator( 
  (main): Sequential( 
    (0): Conv2d(1, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 
1), bias=False) 
    (1): LeakyReLU(negative_slope=0.2, inplace=True) 
    (2): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 
1), bias=False) 
    (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (4): LeakyReLU(negative_slope=0.2, inplace=True) 
    (5): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 
1), bias=False) 
    (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_ru
nning_stats=True) 
    (7): LeakyReLU(negative_slope=0.2, inplace=True) 
    (8): Conv2d(32, 1, kernel_size=(4, 4), stride=(1, 1), bias=False) 
    (9): Sigmoid() 

class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 32 x 32 
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 16 x 16
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 8 x 8 
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 4 x 4
            nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
            # state size. (ndf*4) x 1 x 1
            nn.Sigmoid()  # Produce probability
        )
 
    def forward(self, input):
        return self.main(input)
 
# Create the Discriminator
netD = Discriminator(ngpu).to(device)
 
# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))
    
# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netD.apply(weights_init)
 
# Print the model
print(netD)



Loss Functions and Optimizers
With  and  setup, we can specify how they learn through the loss functions and optimizers. We
will use the Binary Cross Entropy loss ( BCELoss 
<https://pytorch.org/docs/stable/nn.html#torch.nn.BCELoss> __) function which is
defined in PyTorch as:

Notice how this function provides the calculation of both log components in the objective function
(i.e.  and ). We can specify what part of the BCE equation to use with
the  input. This is accomplished in the training loop which is coming up soon, but it is important to
understand how we can choose which component we wish to calculate just by changing  (i.e. GT
labels).

Next, we define our real label as 1 and the fake label as 0. These labels will be used when
calculating the losses of  and , and this is also the convention used in the original GAN paper.
Finally, we set up two separate optimizers, one for  and one for . As specified in the DCGAN
paper, both are Adam optimizers with learning rate 0.0002 and Beta1 = 0.5. For keeping track of
the generator’s learning progression, we will generate a fixed batch of latent vectors that are drawn
from a Gaussian distribution (i.e. fixed_noise) . In the training loop, we will periodically input this
fixed_noise into , and over the iterations we will see images form out of the noise.

𝐷 𝐺

ℓ(𝑥, 𝑦) = 𝐿 = { ,… , , = − [ ⋅ log + (1 − ) ⋅ log(1 − )]𝑙1 𝑙𝑁}
⊤ 𝑙𝑛 𝑦𝑛 𝑥𝑛 𝑦𝑛 𝑥𝑛

𝑙𝑜𝑔(𝐷(𝑥)) 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝑦

𝑦
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In [7]:

Training
Finally, now that we have all of the parts of the GAN framework defined, we can train it. Be mindful
that training GANs is somewhat of an art form, as incorrect hyperparameter settings lead to mode
collapse with little explanation of what went wrong. Here, we will closely follow Algorithm 1 from
Goodfellow’s paper, while abiding by some of the best practices shown in ganhacks 
<https://github.com/soumith/ganhacks> __. Namely, we will “construct different mini-

  ) 
) 

# Initialize BCELoss function
criterion = nn.BCELoss()
 
# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
 
# Establish convention for real and fake labels during training
real_label = 1.0
fake_label = 0.0
 
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))



batches for real and fake” images, and also adjust G’s objective function to maximize .
Training is split up into two main parts. Part 1 updates the Discriminator and Part 2 updates the
Generator.

Part 1 - Train the Discriminator

Recall, the goal of training the discriminator is to maximize the probability of correctly classifying a
given input as real or fake. In terms of Goodfellow, we wish to “update the discriminator by
ascending its stochastic gradient”. Practically, we want to maximize 

. Due to the separate mini-batch suggestion from ganhacks, we
will calculate this in two steps. First, we will construct a batch of real samples from the training set,
forward pass through , calculate the loss ( ), then calculate the gradients in a backward
pass. Secondly, we will construct a batch of fake samples with the current generator, forward pass
this batch through , calculate the loss ( ), and accumulate the gradients with a
backward pass. Now, with the gradients accumulated from both the all-real and all-fake batches,
we call a step of the Discriminator’s optimizer.

Part 2 - Train the Generator

As stated in the original paper, we want to train the Generator by minimizing  in
an effort to generate better fakes. As mentioned, this was shown by Goodfellow to not provide
sufficient gradients, especially early in the learning process. As a fix, we instead wish to maximize 

. In the code we accomplish this by: classifying the Generator output from Part 1 with
the Discriminator, computing G’s loss using real labels as GT, computing G’s gradients in a
backward pass, and finally updating G’s parameters with an optimizer step. It may seem counter-
intuitive to use the real labels as GT labels for the loss function, but this allows us to use the 
part of the BCELoss (rather than the  part) which is exactly what we want.

Finally, we will do some statistic reporting and at the end of each epoch we will push our
fixed_noise batch through the generator to visually track the progress of G’s training. The training
statistics reported are:

Loss_D - discriminator loss calculated as the sum of losses for the all real and all fake batches
( ).
Loss_G - generator loss calculated as 
D(x) - the average output (across the batch) of the discriminator for the all real batch. This
should start close to 1 then theoretically converge to 0.5 when G gets better. Think about why
this is.
D(G(z)) - average discriminator outputs for the all fake batch. The first number is before D is
updated and the second number is after D is updated. These numbers should start near 0 and
converge to 0.5 as G gets better. Think about why this is.

Note: This step might take a while, depending on how many epochs you run and if you removed
some data from the dataset.

𝑙𝑜𝑔𝐷(𝐺(𝑧))

𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝐷 𝑙𝑜𝑔(𝐷(𝑥))

𝐷 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝑥)

𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔(𝐷(𝐺(𝑧)))

𝑙𝑜𝑔(𝐷(𝐺(𝑧)))



In [8]: # Training Loop
 
# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
 
print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):
        
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()
 
        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Add the gradients from the all-real and all-fake batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()
 
        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake
        output = netD(fake).view(-1)



Automatic pdb calling has been turned ON 
Starting Training Loop... 
[0/5][0/469] Loss_D: 1.3488 Loss_G: 0.9656 D(x): 0.4354 D(G
(z)): 0.3950 / 0.3858 
[0/5][50/469] Loss_D: 0.5806 Loss_G: 1.4261 D(x): 0.8229 D(G
(z)): 0.3111 / 0.2487 
[0/5][100/469] Loss_D: 0.2626 Loss_G: 2.3452 D(x): 0.9017 D(G
(z)): 0.1411 / 0.1019 
[0/5][150/469] Loss_D: 0.1032 Loss_G: 3.2160 D(x): 0.9567 D(G
(z)): 0.0558 / 0.0426 
[0/5][200/469] Loss_D: 0.0541 Loss_G: 3.7481 D(x): 0.9818 D(G
(z)): 0.0346 / 0.0271 
[0/5][250/469] Loss_D: 0.0267 Loss_G: 4.1812 D(x): 0.9953 D(G
(z)): 0.0216 / 0.0188 
[0/5][300/469] Loss_D: 0.0197 Loss_G: 4.4317 D(x): 0.9958 D(G
(z)): 0.0153 / 0.0134 
[0/5][350/469] Loss_D: 0.0188 Loss_G: 4.6145 D(x): 0.9958 D(G
(z)): 0.0144 / 0.0113 
[0/5][400/469] Loss_D: 0.0152 Loss_G: 4.7886 D(x): 0.9956 D(G
(z)): 0.0107 / 0.0095 
[0/5][450/469] Loss_D: 0.0108 Loss_G: 5.1942 D(x): 0.9964 D(G
(z)): 0.0072 / 0.0064 
[1/5][0/469] Loss_D: 0.0122 Loss_G: 5.2912 D(x): 0.9954 D(G
(z)): 0.0075 / 0.0069 
[1/5][50/469] Loss_D: 0.0141 Loss_G: 5.2280 D(x): 0.9924 D(G
(z)): 0.0064 / 0.0061 
[1/5][100/469] Loss_D: 0.1107 Loss_G: 3.8883 D(x): 0.9581 D(G
(z)): 0.0633 / 0.0254 
[1/5][150/469] Loss_D: 0.0482 Loss_G: 4.4307 D(x): 0.9722 D(G
(z)): 0.0189 / 0.0128 

        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()
        
        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\t
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        
        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())
        
        # Check how the generator is doing by saving G's output on fixed_no
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dat
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=Tru
            
        iters += 1



[1/5][200/469] Loss_D: 0.0347 Loss_G: 4.7236 D(x): 0.9775 D(G
(z)): 0.0114 / 0.0108 
[1/5][250/469] Loss_D: 0.0304 Loss_G: 5.6340 D(x): 0.9907 D(G
(z)): 0.0207 / 0.0041 
[1/5][300/469] Loss_D: 0.0960 Loss_G: 4.1039 D(x): 0.9498 D(G
(z)): 0.0417 / 0.0173 
[1/5][350/469] Loss_D: 0.0533 Loss_G: 4.7265 D(x): 0.9760 D(G
(z)): 0.0277 / 0.0134 
[1/5][400/469] Loss_D: 0.0486 Loss_G: 4.7801 D(x): 0.9824 D(G
(z)): 0.0297 / 0.0113 
[1/5][450/469] Loss_D: 0.0964 Loss_G: 2.5183 D(x): 0.9180 D(G
(z)): 0.0074 / 0.1065 
[2/5][0/469] Loss_D: 0.2063 Loss_G: 3.2612 D(x): 0.9244 D(G
(z)): 0.1135 / 0.0507 
[2/5][50/469] Loss_D: 0.0556 Loss_G: 4.0973 D(x): 0.9679 D(G
(z)): 0.0214 / 0.0208 
[2/5][100/469] Loss_D: 0.0940 Loss_G: 5.0031 D(x): 0.9847 D(G
(z)): 0.0734 / 0.0091 
[2/5][150/469] Loss_D: 0.1315 Loss_G: 3.3248 D(x): 0.9408 D(G
(z)): 0.0641 / 0.0446 
[2/5][200/469] Loss_D: 0.0747 Loss_G: 3.8794 D(x): 0.9664 D(G
(z)): 0.0368 / 0.0269 
[2/5][250/469] Loss_D: 0.2136 Loss_G: 2.8774 D(x): 0.9215 D(G
(z)): 0.1155 / 0.0699 
[2/5][300/469] Loss_D: 0.1903 Loss_G: 4.4689 D(x): 0.9830 D(G
(z)): 0.1527 / 0.0147 
[2/5][350/469] Loss_D: 0.1256 Loss_G: 3.4426 D(x): 0.9477 D(G
(z)): 0.0665 / 0.0436 
[2/5][400/469] Loss_D: 0.1329 Loss_G: 2.9055 D(x): 0.9180 D(G
(z)): 0.0425 / 0.0659 
[2/5][450/469] Loss_D: 0.1841 Loss_G: 2.4583 D(x): 0.8839 D(G
(z)): 0.0541 / 0.1017 
[3/5][0/469] Loss_D: 0.2805 Loss_G: 1.2669 D(x): 0.7863 D(G
(z)): 0.0263 / 0.3122 
[3/5][50/469] Loss_D: 0.2600 Loss_G: 2.1880 D(x): 0.8523 D(G
(z)): 0.0853 / 0.1386 
[3/5][100/469] Loss_D: 0.2429 Loss_G: 2.1602 D(x): 0.8602 D(G
(z)): 0.0793 / 0.1353 
[3/5][150/469] Loss_D: 0.2490 Loss_G: 2.7900 D(x): 0.9146 D(G
(z)): 0.1405 / 0.0773 
[3/5][200/469] Loss_D: 0.5159 Loss_G: 4.0952 D(x): 0.9575 D(G
(z)): 0.3573 / 0.0205 
[3/5][250/469] Loss_D: 0.5260 Loss_G: 0.9027 D(x): 0.6389 D(G
(z)): 0.0396 / 0.4363 
[3/5][300/469] Loss_D: 0.7686 Loss_G: 1.3448 D(x): 0.8928 D(G
(z)): 0.4568 / 0.2857 
[3/5][350/469] Loss_D: 0.3238 Loss_G: 2.5446 D(x): 0.9031 D(G
(z)): 0.1884 / 0.0920 
[3/5][400/469] Loss_D: 0.3539 Loss_G: 2.8366 D(x): 0.9252 D(G
(z)): 0.2254 / 0.0748 
[3/5][450/469] Loss_D: 0.9167 Loss_G: 0.6556 D(x): 0.4542 D(G
(z)): 0.0206 / 0.5419 
[4/5][0/469] Loss_D: 0.5340 Loss_G: 1.4347 D(x): 0.8683 D(G
(z)): 0.3032 / 0.2714 
[4/5][50/469] Loss_D: 0.3555 Loss_G: 2.4375 D(x): 0.8844 D(G
(z)): 0.1930 / 0.1118 
[4/5][100/469] Loss_D: 2.8385 Loss_G: 0.3316 D(x): 0.5798 D(G



Results
Finally, lets check out how we did. Here, we will look at three different results. First, we will see how
D and G’s losses changed during training. Second, we will visualize G’s output on the fixed_noise
batch for every epoch. And third, we will look at a batch of real data next to a batch of fake data
from G.

Loss versus training iteration

Below is a plot of D & G’s losses versus training iterations.

(z)): 0.8683 / 0.7289 
[4/5][150/469] Loss_D: 0.3828 Loss_G: 1.7796 D(x): 0.8176 D(G
(z)): 0.1513 / 0.1967 
[4/5][200/469] Loss_D: 0.4474 Loss_G: 2.2894 D(x): 0.8162 D(G
(z)): 0.2018 / 0.1255 
[4/5][250/469] Loss_D: 1.0092 Loss_G: 4.4531 D(x): 0.9761 D(G
(z)): 0.5961 / 0.0142 
[4/5][300/469] Loss_D: 0.3695 Loss_G: 1.9994 D(x): 0.8384 D(G
(z)): 0.1615 / 0.1610 
[4/5][350/469] Loss_D: 0.5054 Loss_G: 1.5547 D(x): 0.6974 D(G
(z)): 0.1002 / 0.2441 
[4/5][400/469] Loss_D: 0.5385 Loss_G: 0.8931 D(x): 0.6670 D(G
(z)): 0.0849 / 0.4352 
[4/5][450/469] Loss_D: 0.3376 Loss_G: 2.0288 D(x): 0.8393 D(G
(z)): 0.1387 / 0.1542 



In [9]:

Visualization of G’s progression

Remember how we saved the generator’s output on the fixed_noise batch after every epoch of
training. Now, we can visualize the training progression of G with an animation. Press the play
button to start the animation.

plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
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Out[10]:

               

 Once   Loop   Reflect



#%%capture
fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_li
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000,
 
HTML(ani.to_jshtml())





Real Images vs. Fake Images

Finally, lets take a look at some real images and fake images side by side.

In [11]:

Where to Go Next
We have reached the end of our journey, but there are several places you could go from here. You
could:

Train for longer to see how good the results get
Modify this model to take a different dataset and possibly change the size of the images and
the model architecture
Check out some other cool GAN projects here <https://github.com/nashory/gans-
awesome-applications> __
Create GANs that generate music <https://deepmind.com/blog/wavenet-
generative-model-raw-audio/> __

# Grab a batch of real images from the dataloader
real_batch = next(iter(dataloader))
 
# Plot the real images
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], pad
 
# Plot the fake images from the last epoch
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()




