
Demo of bandit algorithms
This is a simple demo of a simulated bandit environment and some baseline algorithms. In this
environment, the agent can one of the actions and will receive a binary reward signal whose
probability is drawn from a Beta distribution. The probabilities of these beta distributions are not
known to the agent. Thus, the agents must estimate these probabilities while also trying to
maximize their reward.

In [1]:

Reward distributions
[Bernoulli(probs: 0.6865779757499695), Bernoulli(probs: 0.2097484767436
9812), Bernoulli(probs: 0.16393446922302246)]

Random rewards for first distribution
[tensor(1.), tensor(1.), tensor(0.), tensor(1.), tensor(1.), tensor
(1.), tensor(1.), tensor(0.), tensor(1.), tensor(1.), tensor(1.), tenso
r(1.), tensor(1.), tensor(0.), tensor(0.), tensor(0.), tensor(1.), tens
or(1.), tensor(1.), tensor(1.)]

import torch
import matplotlib.pyplot as plt

class BernoulliBanditEnvironment():
 def __init__(self, n_actions):
 probs = torch.distributions.Beta(1,2).sample((n_actions,))
 self.reward_dists = [
 torch.distributions.Bernoulli(probs=p)
 for p in probs
]

 def get_reward(self, action_index):
 return self.reward_dists[action_index].sample((1,))[0]

 def simulate_step(self, agent):
 action_index = agent.select_action()
 reward = self.get_reward(action_index)
 agent.update(action_index, reward)
 return action_index, reward

 def simulate(self, agent, n_steps, verbosity=1):
 cum_reward = 0
 for i in range(n_steps):
 action_index, reward = self.simulate_step(agent)
 cum_reward += reward
 if verbosity >= 1:
 print(
 f'Step = {i+1:02d}, '
 f'Action = {action_index.item():d}, '
 f'Reward = {reward.item():.0f}, '
 f'Cum reward = {cum_reward:.0f}, '
 f'Avg reward = {cum_reward/(i+1):.2f}, '
)
 return cum_reward

torch.manual_seed(0)
env = BernoulliBanditEnvironment(3)
print('Reward distributions')
print(env.reward_dists)
print('\nRandom rewards for first distribution')
print([env.get_reward(0) for i in range(20)])

Interactive agent
For this agent, just uncomment the line below to interactively provide the actions yourself and
see if how well you can do.

In [2]:

Oracle agent
This is like a cheating agent that actually already knows the probabilities for each action and thus
can choose the optimal action every time.

class InteractiveAgent:
 def __init__(self, n_actions):
 self.n_actions = n_actions

 def select_action(self):
 action_index = -1
 while action_index < 0:
 print(f'Enter action index from 0-{self.n_actions-1}')
 try:
 action_index = int(input())
 except Exception:
 action_index = -1
 if action_index >= 0 and action_index < self.n_actions:
 break
 else:
 print('Incorrect input, try again.')
 action_index = -1
 return torch.tensor(action_index)

 def update(self, action_index, reward):
 return self

torch.manual_seed(2)
env = BernoulliBanditEnvironment(2)
interactive_agent = InteractiveAgent(len(env.reward_dists))
Uncomment to be interactive
#env.simulate(interactive_agent, n_steps=2)

In [3]:

Step = 01, Action = 1, Reward = 0, Cum reward = 0, Avg reward = 0.00,
Step = 02, Action = 1, Reward = 1, Cum reward = 1, Avg reward = 0.50,
Step = 03, Action = 1, Reward = 1, Cum reward = 2, Avg reward = 0.67,
Step = 04, Action = 1, Reward = 0, Cum reward = 2, Avg reward = 0.50,
Step = 05, Action = 1, Reward = 1, Cum reward = 3, Avg reward = 0.60,
Step = 06, Action = 1, Reward = 1, Cum reward = 4, Avg reward = 0.67,
Step = 07, Action = 1, Reward = 1, Cum reward = 5, Avg reward = 0.71,
Step = 08, Action = 1, Reward = 0, Cum reward = 5, Avg reward = 0.62,
Step = 09, Action = 1, Reward = 1, Cum reward = 6, Avg reward = 0.67,
Step = 10, Action = 1, Reward = 1, Cum reward = 7, Avg reward = 0.70,
Step = 11, Action = 1, Reward = 1, Cum reward = 8, Avg reward = 0.73,
Step = 12, Action = 1, Reward = 1, Cum reward = 9, Avg reward = 0.75,
Step = 13, Action = 1, Reward = 1, Cum reward = 10, Avg reward = 0.77,
Step = 14, Action = 1, Reward = 1, Cum reward = 11, Avg reward = 0.79,
Step = 15, Action = 1, Reward = 1, Cum reward = 12, Avg reward = 0.80,
Step = 16, Action = 1, Reward = 1, Cum reward = 13, Avg reward = 0.81,
Step = 17, Action = 1, Reward = 1, Cum reward = 14, Avg reward = 0.82,
Step = 18, Action = 1, Reward = 0, Cum reward = 14, Avg reward = 0.78,
Step = 19, Action = 1, Reward = 1, Cum reward = 15, Avg reward = 0.79,
Step = 20, Action = 1, Reward = 1, Cum reward = 16, Avg reward = 0.80,

Out[3]: tensor(16.)

class OracleAgent:
 def __init__(self, env):
 self.optimal_action = torch.argmax(torch.tensor([
 dist.probs for dist in env.reward_dists
]))

 def select_action(self):
 return self.optimal_action

 def update(self, action_index, reward):
 return self

 def __str__(self):
 return 'Oracle'

torch.manual_seed(2) # 2 and 5
env = BernoulliBanditEnvironment(2)
oracle = OracleAgent(env)
env.simulate(oracle, n_steps=20)

Try to see how close you can get to the oracle agent

In [4]:

Random agent
This agent merely chooses an action at random.

The probabilities were [0.3823629915714264, 0.7332632541656494]

Your reward was $0, the oracle policy would have received an award clos
e to $7.38

env = BernoulliBanditEnvironment(2)
n_steps = 10

interactive_agent = InteractiveAgent(len(env.reward_dists))
total_reward = 0
Uncomment to be interactive
#total_reward = env.simulate(interactive_agent, n_steps=n_steps)
oracle_reward = env.simulate(OracleAgent(env), n_steps=10000, verbosity=0
print(f'\nThe probabilities were {[dist.probs.item() for dist in env.rewar
print(f'\nYour reward was ${total_reward}, the oracle policy would have re

In [5]:

Greedy agent
This chooses the best action given it's current estimate of the action value function. Note the
initialization value can matter significantly as higher values will encourage it to explore more.

Step = 01, Action = 2, Reward = 0, Cum reward = 0, Avg reward = 0.00,
Step = 02, Action = 1, Reward = 1, Cum reward = 1, Avg reward = 0.50,
Step = 03, Action = 0, Reward = 1, Cum reward = 2, Avg reward = 0.67,
Step = 04, Action = 1, Reward = 0, Cum reward = 2, Avg reward = 0.50,
Step = 05, Action = 2, Reward = 0, Cum reward = 2, Avg reward = 0.40,
Step = 06, Action = 1, Reward = 1, Cum reward = 3, Avg reward = 0.50,
Step = 07, Action = 1, Reward = 0, Cum reward = 3, Avg reward = 0.43,
Step = 08, Action = 2, Reward = 0, Cum reward = 3, Avg reward = 0.38,
Step = 09, Action = 2, Reward = 0, Cum reward = 3, Avg reward = 0.33,
Step = 10, Action = 1, Reward = 1, Cum reward = 4, Avg reward = 0.40,
Step = 11, Action = 1, Reward = 0, Cum reward = 4, Avg reward = 0.36,
Step = 12, Action = 1, Reward = 0, Cum reward = 4, Avg reward = 0.33,
Step = 13, Action = 2, Reward = 0, Cum reward = 4, Avg reward = 0.31,
Step = 14, Action = 1, Reward = 0, Cum reward = 4, Avg reward = 0.29,
Step = 15, Action = 2, Reward = 0, Cum reward = 4, Avg reward = 0.27,
Step = 16, Action = 2, Reward = 0, Cum reward = 4, Avg reward = 0.25,
Step = 17, Action = 2, Reward = 1, Cum reward = 5, Avg reward = 0.29,
Step = 18, Action = 2, Reward = 0, Cum reward = 5, Avg reward = 0.28,
Step = 19, Action = 1, Reward = 0, Cum reward = 5, Avg reward = 0.26,
Step = 20, Action = 0, Reward = 1, Cum reward = 6, Avg reward = 0.30,

Out[5]: tensor(6.)

class RandomAgent:
 def __init__(self, n_actions):
 self.n_actions = n_actions

 def select_action(self):
 return torch.randint(self.n_actions, (1,))[0]

 def update(self, action_index, reward):
 return self

 def __str__(self):
 return f'Random'

torch.manual_seed(0)
env = BernoulliBanditEnvironment(3)
random_agent = RandomAgent(len(env.reward_dists))
env.simulate(random_agent, n_steps=20)

In [6]:

-greedy agent

With some probability, take a random action otherwise pick greedy action.

𝜖

Step = 01, Action = 0, Reward = 1, Cum reward = 1, Avg reward = 1.00,
Step = 02, Action = 0, Reward = 1, Cum reward = 2, Avg reward = 1.00,
Step = 03, Action = 0, Reward = 0, Cum reward = 2, Avg reward = 0.67,
Step = 04, Action = 1, Reward = 1, Cum reward = 3, Avg reward = 0.75,
Step = 05, Action = 1, Reward = 1, Cum reward = 4, Avg reward = 0.80,
Step = 06, Action = 1, Reward = 0, Cum reward = 4, Avg reward = 0.67,
Step = 07, Action = 2, Reward = 0, Cum reward = 4, Avg reward = 0.57,
Step = 08, Action = 0, Reward = 0, Cum reward = 4, Avg reward = 0.50,
Step = 09, Action = 1, Reward = 1, Cum reward = 5, Avg reward = 0.56,
Step = 10, Action = 1, Reward = 0, Cum reward = 5, Avg reward = 0.50,
Step = 11, Action = 1, Reward = 1, Cum reward = 6, Avg reward = 0.55,
Step = 12, Action = 1, Reward = 1, Cum reward = 7, Avg reward = 0.58,
Step = 13, Action = 1, Reward = 1, Cum reward = 8, Avg reward = 0.62,
Step = 14, Action = 1, Reward = 0, Cum reward = 8, Avg reward = 0.57,
Step = 15, Action = 1, Reward = 0, Cum reward = 8, Avg reward = 0.53,
Step = 16, Action = 1, Reward = 0, Cum reward = 8, Avg reward = 0.50,
Step = 17, Action = 1, Reward = 0, Cum reward = 8, Avg reward = 0.47,
Step = 18, Action = 0, Reward = 1, Cum reward = 9, Avg reward = 0.50,
Step = 19, Action = 0, Reward = 1, Cum reward = 10, Avg reward = 0.53,
Step = 20, Action = 0, Reward = 1, Cum reward = 11, Avg reward = 0.55,

Out[6]: tensor(11.)

class GreedyAgent:
 def __init__(self, n_actions, init_value=0):
 self.init_value = init_value
 self.action_counts = torch.zeros(n_actions) #n_t
 self.action_value_func = init_value * torch.ones(n_actions) #Q_t

 def select_action(self):
 return torch.argmax(self.action_value_func)

 def update(self, action_index, reward):
 action_count = self.action_counts[action_index]
 sum_rewards = action_count * self.action_value_func[action_index]
 new_avg_reward = (sum_rewards + reward) / (action_count + 1)

 self.action_counts[action_index] += 1
 self.action_value_func[action_index] = new_avg_reward
 return self

 def __str__(self):
 return f'Greedy(init={self.init_value})'

torch.manual_seed(0)
env = BernoulliBanditEnvironment(3)
Try init_value = 0, 1 or 100
greedy = GreedyAgent(len(env.reward_dists), init_value=1)
env.simulate(greedy, n_steps=20)

In [7]:

Step = 01, Action = 0, Reward = 1, Cum reward = 1, Avg reward = 1.00,
Step = 02, Action = 0, Reward = 1, Cum reward = 2, Avg reward = 1.00,
Step = 03, Action = 0, Reward = 1, Cum reward = 3, Avg reward = 1.00,
Step = 04, Action = 0, Reward = 1, Cum reward = 4, Avg reward = 1.00,
Step = 05, Action = 0, Reward = 1, Cum reward = 5, Avg reward = 1.00,
Step = 06, Action = 1, Reward = 0, Cum reward = 5, Avg reward = 0.83,
Step = 07, Action = 0, Reward = 0, Cum reward = 5, Avg reward = 0.71,
Step = 08, Action = 0, Reward = 1, Cum reward = 6, Avg reward = 0.75,
Step = 09, Action = 0, Reward = 1, Cum reward = 7, Avg reward = 0.78,
Step = 10, Action = 2, Reward = 0, Cum reward = 7, Avg reward = 0.70,
Step = 11, Action = 0, Reward = 1, Cum reward = 8, Avg reward = 0.73,
Step = 12, Action = 0, Reward = 0, Cum reward = 8, Avg reward = 0.67,
Step = 13, Action = 0, Reward = 0, Cum reward = 8, Avg reward = 0.62,
Step = 14, Action = 0, Reward = 0, Cum reward = 8, Avg reward = 0.57,
Step = 15, Action = 0, Reward = 1, Cum reward = 9, Avg reward = 0.60,
Step = 16, Action = 2, Reward = 0, Cum reward = 9, Avg reward = 0.56,
Step = 17, Action = 0, Reward = 0, Cum reward = 9, Avg reward = 0.53,
Step = 18, Action = 0, Reward = 1, Cum reward = 10, Avg reward = 0.56,
Step = 19, Action = 0, Reward = 1, Cum reward = 11, Avg reward = 0.58,
Step = 20, Action = 0, Reward = 1, Cum reward = 12, Avg reward = 0.60,

Out[7]: tensor(12.)

class EpsilonGreedyAgent(GreedyAgent):
 def __init__(self, n_actions, epsilon):
 super().__init__(n_actions, init_value=0)
 self.epsilon = epsilon

 def select_action(self):
 if torch.rand((1,))[0] < self.epsilon:
 return torch.randint(len(self.action_value_func), (1,))[0]
 else:
 return torch.argmax(self.action_value_func)

 def __str__(self):
 return f'ϵ-Greedy($\epsilon={self.epsilon:.2f}$)'

Try init_value = 0, 1 or 100
torch.manual_seed(0)
env = BernoulliBanditEnvironment(3)
epsilon_greedy = EpsilonGreedyAgent(len(env.reward_dists), epsilon=0.2)
env.simulate(epsilon_greedy, n_steps=20)

Let's compare these algorithms.

In [8]:

Out[8]: <matplotlib.legend.Legend at 0x7fa5b7ed73a0>

Compare algorithms
n_actions = 100
n_steps = 1000
agents = [
 RandomAgent(n_actions),
 GreedyAgent(n_actions, init_value=0),
 GreedyAgent(n_actions, init_value=1),
 EpsilonGreedyAgent(n_actions, epsilon=0.0),
 EpsilonGreedyAgent(n_actions, epsilon=0.01),
 EpsilonGreedyAgent(n_actions, epsilon=0.1),
]
label_list = []
mean_reward_tensor = []
for seed in range(30):
 mean_reward_list = []
 torch.manual_seed(seed)
 env = BernoulliBanditEnvironment(n_actions)
 #print([dist.probs.item() for dist in env.reward_dists])
 for agent in agents + [OracleAgent(env)]:
 torch.manual_seed(seed*1000)
 mean_reward = []
 cum_reward = 0
 for step in range(n_steps):
 _, reward = env.simulate_step(agent)
 cum_reward += reward
 mean_reward.append(cum_reward / (step + 1))
 mean_reward_list.append(mean_reward)
 if seed == 0:
 label_list.append(str(agent))
 mean_reward_tensor.append(mean_reward_list)

Plot averages
average_reward_agent = torch.tensor(mean_reward_tensor).mean(dim=0)
fig = plt.figure(figsize=(6,4), dpi=100)
for x, label in zip(average_reward_agent, label_list):
 plt.plot(x, label=label)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

