Density Estimation
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Density estimation finds a density (PDF/PMF) that
represents the data (or empirical distribution) well




Motivation: Density estimation can be used to
uncover underlying structure
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Motivation: Density estimation can be used to
uncover underlying structure

Train accuracy: 87.5

» Cluster structure
» Gaussian mixture models
» Poisson mixture models

Test accuracy:*89.5
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Multivariate
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Motivation: Density estimation can be used to
uncover underlying structure

Marginals are
Poisson

> Dependence structure of
random variables (e.g.,
correlation)
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Motivation: Density estimation can be used for
anomaly detection
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https://www.slideshare.net/agramfort/anomalynovelty-detection-with-scikitlearn
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Parametric density estimation assumes
a density model class parameterized by 6

» Assumption: Bernoulli density
6=Ipl, pel01]
» Assumption: Exponential density
0 = [1], ALER,,
> Assumption: Gaussian density
0 = [u, d%], ueER c?€ER,,

» Assumption: DNN-based model
0 = [“all neural network parameters”]
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How do we determine which model in the model
class is the best?

> Classically, people have turned to information
theoretic quantities

> Entropy

» Kullback Liebler (KL) Divergence

> Maximum likelihood estimation (MLE)
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Informally, entropy measures the “amount of
randomness/disorder” of a distribution

> Formally, entropy for discrete
variables

H(P(")) = E[-log P(x)] = 2 _P(x) log P(x)

X

> Formally, differential entropy for
continuous variables !

H(p()) = E[-logp(x)] = f —p(x) log p(x) dx

X =05

» Consider fair coin vs coin where
both sides are heads

0.5
PriX=1)




Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

P P
KL(P(-),Q(")) = Ex-p |log Qgg =) P(x)log 09

> Formally, KL divergence for continuous variables

(x) (x)
KL(p(),q()) = Exp {logz(i) fxp(x) lOgZ(i)

"?\ 7N\ i
p(x) / ) \ C] (%) / \o Dy, (P HQ)

> Formally, KL divergence [(or discrete variables
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Informally, Kullback-Leibler Divergence (KL)
measures the distance between distributions

p(x) p(x)
e fxp(x) o8 o P

KL(p(-),q(")) = Ex, [log

> Not symmetric!

> Non-negative property
KL(p(-),q()) = 0
» Equal distribution property:

KL(p(),q()) =0 p() =q()




One use of KL divergence is to estimate
distribution parameters only from samples

> Let p(x) denote the real/true distribution of
the data

> p(x) is unknown

> We only have samples {x;}i-; from p(x)
> Let G(x; 8) denote an estimate of the true
distribution

> Parametrized by 0

> We want to find g (x; 8) that is closest to p(x)
0" = argminKL(p ("), q(; 6))




One use of KL divergence is to estimate
distribution parameters only from samples

> We want to find g(x; 8) that is closest to p(x)
0" = argminKL(p ("), q(; 6))

» Wait, but we don’t know p(x), how do we do
this?

» Two main ideas for simplification

» Constants with respect to (w.r.t.) 8 can be ignored
> Full expectation replaced by empirical expectation




Derivation of minimum KL divergence
with samples

»argminKL(p(),q(+; 0))

_ p(x)

> =argmin Ey; llogﬁ(x o)

> = arg mé}n —Ex-pllogg(x; 0)] + Ex.,[logp(x)]
> = arg mein _IEX~p Og CI(x; 0) T C

>~ arg mgin —EXNP log G(x;0).

> — arg min — i ?=1 lOg él\(xl' 6)

0 n




Maximum likelihood estimation (MLE) is another way
to estimate distribution parameters from samples

> leellhood function how likely (or probable) a dataset
= {xl} —, is under a distribution with parameters 6

L(O;D) =q(xq, Xy, ..., Xn;0)

> If we assume samples (or observations) of dataset are
independent and identically distributed (iid), then

£(6;D) = ]_[qocl, 0)

» Often simplified to the Iog-llkellhood function

£(0; D) =logL(8;D) =Y.i-,logG(x;; 0)




Maximum likelihood (MLE) is another way to
estimate distribution parameters from samples

> Optimize the following

0" = arg maX{’(H D) = arg maxz log g(x;;0)

» Equivalent to

0* = arg mln — —z log g(x;; 0)

» Wait, doesn’t that look famlllar?
> MLE equivalent to minimum KL divergence!




The most ubiquitous multivariate distribution is
the multivariate Gaussian/normal distribution

» Compare univariate to multivariate:
> 1L is mean and X is covariance

p(x) = ! eXp{—l(x_ﬂ)z}

V2mVo? 2 o2
p(xXq, ) Xg)
1 1
= expi—=(x — )7 (x — )
(vV2r) Vdetz { ? }

»® = X1 is called the precision matrix (or inverse covariance)
» ¥ (and ©) must be positive definite X > 0
> (Suppose X = I, suppose u = 0)
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MILE of multivariate Gaussian can be computed
via empirical mean and covariance matrix

> The MLE estimate (or equivalently minimum KL
divergence) is simply the empirical mean and
covariance matrix

n

.1 2
HMLE = 1. Xi
1=1
n
A 1 ~ ~ .
LMLE = EZ(”C" — imee) (X — AmLg)
i=1

» Derivation for £y  is at the end




Why are multivariate Gaussian distributions so
ubiguitous?

» Reason from nature

> The sum of independent random variables
approaches a Gaussian distribution.

» Central limit theorem!

» Math reason

> Closed-form marginal and conditionals!
(Usually, very difficult to compute because sum/integral!)

» Affine/linear transformations of Gaussians are
Gaussians
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Marginal and conditional distributions are
Gaussian and can be computed in closed-form

» 2D case:

20. |
X = [le xZ] ~ N(H — [:uluuZ];Z — 1T )

021 J22_
> Marginal distributions:
x; ~N(u= H1;U§ = U]i)
X, ~ N =pz,0° = 0y)
» Conditional distributions:
xi|x, = a

2

012 031
~N<u=u1= 7 (@a—pp), 0% =of )
0, 0,




Marginal and conditional distributions are
Gaussian and can be computed in closed-form

fr, V1)

-2 -1 0 1 2 fy, (v2)

Image from https://geostatisticslessons.com/lessons/multigaussian
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https://geostatisticslessons.com/lessons/multigaussian

Gaussian marginals does NOT imply jointly
multivariate Gaussian (converse NOT generally true)

&

N
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Affine transformations of multivariate Gaussian
vector are also multivariate Gaussian

»Ifx ~ N (u,X) andy = Ax + b, then
y ~ N (Ap + b, AZAT).
» Special case: Marginal distribution when A is:
4. = 1, ifi =k
Lo, otherwise
theny = x;, ~ p(xy).
» Key point: Marginals, conditionals and affine
functions known in closed-form.

> Consequence 1: Easy to manipulate.

» Consequence 2: Gaussians and linear ideas play
nicely with each other.
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Non-parametric density
estimation (time-permitting)




Non-parametric density estimation

» Motivation

> Histograms
> Choosing k
> Choosing bin edges

» Kernel density
» Choosing bandwidth
> Curse of dimensionality again




Why non-parametric density estimates?

> Parametric densities are
excellent if the assumptions are
correct (e.g., Gaussian)

> However, the distributions may
not align with the assumptions




Histograms are the simplest density estimators

» Setup bin locations
> Count number of samples that fall in each bin
> Normalize to be a density
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2D Histograms can be created
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How to select the number of bins (usually
denoted k)?

» Too few bins will
underfit 3

> Too many bins will
overfit

> ML approach:
CV/Test log likelihood
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Drawbacks: Histograms can depend on bin edges
and are not smooth

Histogram of x X:C(3, 45, 50, 8, 9) Histogram of x
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https://www.slideserve.com/geona/introduction-to-non-parametric-statistics-kernel-density-estimation
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Kernel densities overcome this drawback by
placing a Gaussian density at each point

> Kernel density has the following form:

n n
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Similar to number of bins, the key parameter for
kernel densities is the “bandwidth” or o parameter

» Bandwidth can be selected via CV/Test log
likelihood (similar to number of histogram bins)
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Derivations (optional)




MLE of multivariate Gaussian derivation as
minimum of negative log likelihood

> Log-likelihood of muIt)ilvariate Gaussian (u = 0)

—ElongI ~om. 1 xi %7 1x; + const
l=

» Three main identities:
. d log|A| _ A_T

OA
» Tr(xTAx) = Tr(Axx")
. 0Tr(AX) — 4

X

» Hint: Do derivative with respect to 71




Simplification and derivation of MLE for
multivariate Gaussian

» L(Z; D) = ——108|Z| — — N X 27
- Zloglz - 257L, T2 )
n _ 1 _
> =~ log|Z 1 — ~ 1T (Z 1(ZixixiT))

oL dlogl|A| _ AT

— A
0x~1 OTr(AX)

0X




