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Current ML pertforms well
but lacks important desired qualities

Optimistic perspective

* The next generation of ML will
need to exhibit new desired
properties.

* Fairness — Are the predictions fair wir.t.
age or racer

* Robustness — Can the model predict
accurately even under new
environment conditions?

* Causality — Can the model estimate
interventional or counterfactual
queriesr?

Pessimistic perspective

* 'The unintentional misuse ot data by
algorithms underpins many
problems in ML.

* Fair ML — Avoids misuse of age or race
in predictions.

e Robust ML. — Avoids misuse of
spurious signals that will only work in
one environment.

e Causal ML — Avoids misuse of factual
information to infer erroneous
interventional or counterfactual
information.



How can we impose these desired properties
on ML systems?

* Design model carefully (first wave of deep learning)

* Improve inductive bias of model such as CNN and transformer architectures

* Hand-design model to ensure specific property
(e.g., graph models that are invariant to node permutations)

* 'Train bigger model with more data (second wave ot deep learning)
* Hope more data or computation will produce desired qualities
* Yet, it 1s still unclear if this solves any of the prior problems or just hides them



Distribution alignment 1s representation learning with

the opposite objective of classification
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Distribution alignment is NO'T supervised
alionment or spatial alignment

* Supervised/point-to-point alignment — Given pairs of points, learn a
mapping between them
* Example: (text, image) pairs to learn multi-modal alignment of text and images
* Example: (English text, Spanish text) pairs to learn translation
* In distribution alignment, no pairing information is available.

* Spatial alignment — Align images from two different perspectives
* Example: Align satellite images of overlapping regions to combine information
* Example: Align RGB-image with depth-image (e.g., remote sensing)
* Example: Align pixels in frame 1 to frame 2 in video (e.g., video deblurring)
* In distribution alignment, there is no notion of space, just distributions



Overview

David I. Inouye, Purdue University

Three representative
applications of distribution
alionment

Unified alignment

framework

e Fair Classification

* Domain Generalization
(robustness to distribution

shifts)

* Causal Representation
Learning

* Alignment definitions
(what 1s 1t?)

* Alignment algorithms
(how to optimize it?)

* Alignhment evaluation

metrics (how to evaluate
1t?)



Alignment
applications
can be unified
as a task
objective +
(sof)
alignment
constraints

Task objective

* Overall goal of learning
e “What we want”

m /\lionment constraints

* Ensures the desired property
e “What we want to avoid”
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Application: Fair Classification



Background: Fair classification aims to correct
historical or unintentional bias in ML, systems

* In social ML applications such as loan approval, recidivism prediction (bail), or
job applications, classification models can be unfair

* Could be caused by b1as in historical data
e.g., blas against minorities in recidivism prediction

* Could be caused by using sensitive attributes unintentionally
e.g., even though gender 1s excluded from a loan approval application, other features
such as name could be highly correlated with gender and used to predict

* Demogtraphic parity — One notion of fairness that the prediction is
independent of the sensitive attribute

E[h(x)|d] = E[A(x)]
* Demographic parity gap: |[maxy E[h(x)|d] — ming E[h(x)|d"]]
* Approach: Learn a fair representation g and then classity using this

representation f: h(x) = f(g(x, d))




Fair classification aims to classity correctly
while controlling for sensitive attributes

Task objective: (Soft) alignment constraints:
“What we want” “What we want to avoid”

* Accurately predict whether a loan ¢ The prediction must be ndependent
application should be approved of sensitive attribute d

* Standard classification loss * Alignment constraint Ly)ign(g) =

Lle(f’ g) = IE[f(f(g(x, d))' y)] ¢(P(g(x, d)|d:1)»P(g(x» d)leZ))

Raw representation 1s /—\ ) W | Aligned representation
good for task but | y is good for task but
\_/

sensitive attribute can 2 31y = ) 30 Py = hia) =1 sensitive attribute
be determlned xo = f31(2) z~pz, cannot be detefmlﬁed
Ty , AR ST
% dg: Pla=g(x)) = % Vg:Pla=g(2)) < 5= =3

[lustration from: Balunovic, M., Ruoss, A., & Vechev, M. (2021, September). Fair normalizing flows. In International Conference on Learning
Representations.



Approach 1: Fair normalizing flows use invertible
models to provably learn a fair representation

* Assumption 1 — Aligner is invertible, i.e., g(x, d) is invertible w.t.t. x
* Assumption 2 — Data distribution is known (or approximately known)
* Thus, distribution of z = g(x, d) is known in closed-form as:
P(z|d) = |J;(x|d)| " P(x|d)
* And the KL divergence can be directly estimated with samples
allgn(g) — ¢KL(P(Z|d 1), P(z|d_ 2)) + ¢KL(P(Z|d 2), P(z|d_ 1))

* Final problem minimizes classification and ahgnment losses:

rgm Las(f, 9) + ALy, (9)

Balunovic, M., Ruoss, A., & Vechev, M. (2021, September). Fair normalizing flows. In International Conference on Learning Representations.



Approach 2: Fair variational autoencoders
(VAE) leverage well-known upper bounds

* Assumption 1 — Encoder is probabilistic, g(x, d) = P(z|x, d)

* Fact 2 — Mutual information between the latent representation z = g(x, d)
and the domain label d is equivalent to Jensen-Shannon divergence

I(z=g(x,d),d) = ¢;sp(P(zld=1), P(z]d->))

* Fair variational autoencoders upper bounds using a shared prior distribution
. o(x|z,d
* ¢]$D (P(Z|d=1); P(Z|d=2)) < len [Ep [— 108PEZ||X, d; Q(Z)]
* Others VAE-based works use other upper bounds on mutual information
including via contrastive estimation

Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2015). The variational fair autoencoder. ICLR, 2016.

Moyer, D., Gao, S., Brekelmans, R., Galstyan, A., & Ver Steeg, G. (2018). Invariant representations without adversarial training. Advances in Neural Information
Processing Systems, 31.

Gupta, U., Ferber, A. M., Dilkina, B., & Ver Steeg, G. (2021, May). Controllable guarantees for fair outcomes via contrastive information estimation. In Proceedings of
the AAAI Conference on Attificial Intelligence (Vol. 35, No. 9, pp. 7610-7619).



Application:

Domain Generalization



Background: A distribution shift means that
the training and test distributions are different.

Domain generalization Subp;;;;:tlatlon Domain generalization + subpopulation shift
Dataset iWildCam Camelyon17 RxRx1 OGB-MoIPCBA GlobalWheat CivilComments FMoW PovertyMap Amazon Py150
Input (x) camera trap photo tissue slide cellimage molecular graph wheat image online comment satellite image satellite image product review code
Prediction (y)  animal species tumor perturbed gene  bicassays wheat head bbox  toxicity land use asset wealth sentiment  autocomplete
Domain (d) camera hospital batch scaffold location, time demographic  time, region country, rural-urban user git repository
# domains 323 5 51 120,084 47 16 16 x5 23x2 2,586 8,421
# examples 203,029 455,954 125,510 437,929 448,000 523,846 19,669 539,602 150,000
What do Black Overall a solid import
and LGBT package that numpy as np
Trai | people have to has a good
rain eéxample do with bicycle quality of
licensing? construction
for the price. norm=np.___
As a Christian, | *loved* my import
| will not be French press, subprocess
patronizing it's so perfect as sp
Test example any of those and came with
businesses. all this fun p=sp.Popen()
stuff! stdout=p.____
Artedtom Beery et al. Bandi et al. Taylor et al. Hu et al. Davidetal. Borkanetal. Christie et al. Yeh et al. Ni et al. Raychev et al.
P 2020 2018 2019 2020 2021 2019 2018 2020 2019 2016

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A,, ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution |4
shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.
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Background: Distribution shifts violate the
standard assumptions in ML that train=test

* Thus, the test accuracy very low even under benign shifts

Dataset Metric In-dist setting In-dist Out-of-dist | Gap
IWILDCAM2020-WILDS Macro F1 Train-to-train | 47.0 (1.4) 31.0 (1.3) | 16.0
CAMELYON17-WILDS Average acc Train-to-train 93.2 (5.2) 70.3 (6.4) | 22.9
RxRx1-wILDS Average acc Mixed-to-test 39.8 (0.2) 29.9 (0.4) 9.9
OGB-MoLPCBA Average AP Random split 34.4 (0.9) 27.2 (0.3) 7.2
GLOBALWHEAT-WILDS Average domain acc Mixed-to-test 63.3 (1.7) 49.6 (1.9) | 13.7
CivILCOMMENTS-WILDS Worst-group acc Average 92.2 (0.1) 56.0 (3.6) | 36.2
FMoW-wILDS Worst-region acc Mixed-to-test 48.6 (0.9) 32.3 (1.3) | 16.3
POVERTYMAP-WILDS Worst-U/R Pearson R | Mixed-to-test | 0.60 (0.06) | 0.45 (0.06) | 0.15
AMAZON-WILDS 10th percentile acc Average 71.9 (0.1) 53.8 (0.8) | 18.1
Py150-wILDS Method/class acc Train-to-train | 75.4 (0.4) 67.9 (0.1) 7.5

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.
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Domain generalization (DG) aims to predict
accurately even under distribution shift

* Domain generalization seeks to
reduce this gap caused by shifts

* A type of out-of-distribution
generalization

e The test metric can be seen as a
generalization of train-test split

* Except the test split comes from an
unseen shifted distribution

* Given data from the training domains,
find a model that performs well on a
held-out test domain dataset
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Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution

shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.
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DG Approach 1: Domain-invariant representation learning
removes domain-specific features to aid DG performance

Task objective:
“What we want”

* Accurate prediction

e Standard classification loss on
training domains

Lae(f, 9) = E[¢(f(g(®),5)]

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ...

networks. The journal of machine learning research, 17(1), 2096-2030.

(Soft) alighment constraints:
“What we want to avoid”

* We want the features to be
independent of the domain

* Feature-based alignment
constraint

Lfeature(g) —
UL Cold—y), P(9()1dy)

* Notice that aligner is shared across
domains

& Lempitsky, V. (2016). Domain-adversarial training of neural



DG Approach 1: Domain adversarial neural
networks aim to align latent features

* Intuition — Competitive game
* Counterfeiter 1s trying to avoid getting caught

T , Adversarial alignment problem
* DPolice 1s trying to catch counterfeiter

rggp Lclf (gr f) + ALgldiZn (g)

* Algorithm — Usually alternating optimization min E[2(f(g(x)), )] + 2 (max —E[¢ce(h(g(x)), d)])
between min and max 9f h

* hipq = argirlnax—[E[fCE(h(gt(x)), d)]

* gt_+1rft+1 = ~— Vo = 1 Ley
min E[£(f (g(0)), y)| = 2E[£cp(heri (9(0)), )] D) || © Eclass label y
9 :> c>®c> |

& label pre (h( tor
¢ DraWbaCkS \ d(nnun(llssm(r h

* Unstable or pootly conditioned optimization P emlm J )

* TLacks domain-agnostic evaluation metrics $ m E> @ domain label d
(e.g., unable to check for overfitting) L «V - ’ \ v —£

forwardprop  backprop (and produced derivatives) allgn

lllustration adapted from Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016). Domain-
adversarial training of neural networks. The journal of machine learning research, 17(1), 2096-2030.



DG Approach 2: Domain-invariant predictors 1s
an alternative approach to DG

Task objective: (Soft) alignment constraints:
“What we want” “What we want to avoid”
* Accurate prediction * We want the predictors to be
e Standard classification loss on independent of the domain
training domains * Predictor-based alignment
Lae(f,9) = E[£(f(9(x)),y)] constraint
predictor .
La lgn (g) o

S (EOlg(x), dey), P(ylg(x), dop)

* This aligns the conditional distribution of label
y given the features z = g(x)

Arjovsky, M., Bottou, L., Gulrajani, |., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint arXiv:1907.02893.



DG Approach 2: Invariant Risk Minimization (IRM) attempts
to align conditional distributions via bi-level optimization

* Minimize training error subject to the constraint that the predictive distribution is the
same across all domains

min LaLlr(g,f)
s.t. P(ylg(x)) = P(ylg(x),d),vd

* Assumption 1: Assume that an optimal probabilistic classifier can approximate the
true predictive distribution for each domain

d = argmin L (g, f) = P(y1g(x))

* Minimize training error such that f is optimal classifier across domains
Ifqlifn SaLir (9, f)
s.t. f=f4 = argmianlf(g,f’),Vd
fl

* This 1s called a bi-level optimization problem

Arjovsky, M., Bottou, L., Gulrajani, |., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint arXiv:1907.02893.



DG Approach 2: Invariant Risk Minimization (IRM) attempts
to align conditional distributions via bi-level optimization

* Minimize training error such that f is optimal classifier across domains

- d
nin ZaLleir(9, f)

s.t. f=f; = argminLglf(g,f’),Vd
fl
* This is called a bi-level optimization problem
* Bi-level optimization is very difficult similar to adversarial optimization

* Original paper proposes one approximation using gradients of classifier:

min 2aléir (9, f) + A||VrLE (g, f)Hj

* If the gradients are zero across all domains, then f may be at an optimal point

* Requires backpropagation through backpropagation (nested gradient computation)

Arjovsky, M., Bottou, L., Gulrajani, |., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint arXiv:1907.02893.



Application:

Causal Representation Learning



Background: Causal probabilistic models
implicitly encode the effect of interventions

The stove distribution is

IW the same, i.c., aligned! \ Intervened distribution
P(stove)P(boiling|stove)

P(stove)d(boiling = True)

Force the

S to‘;e Water . watet to
On: Boiling: boil
Both are valid factorizations. One idea: The factorization that
But which factorization is causal? changes the least under an intervention.
Force the
water to
: .. L boil
Implied factorization Intervened distribution
P(boiling)P(stove|boiling) §(boiling = True)P(stove|boiling)
\ The stove distribution 1s different under __— 0

intervention. P(stove|boiling) = P(stove) David I. Inouye, Purdue University



Background: Causal probabilistic models
implicitly encode the effect of interventions

The boiling distribution is
Implied factorization / the same, i.e., aligned! Mutlon

P(stove)P(boiling|stove) d(stove = True)P(boiling|stove)
Stove Water ic;rc: on
On? Boiling? v
Both are valid factorizations. One 1dea: The factorization that
But which factorization is causal? changes the least under an intervention.

Force

stove on

Implied factorization Intervened distribution
P(boiling)P(stove|boiling) P(boiling)§ (stove = True)
h __ The boiling distributionis ~~_~* o

different under intervention. David I. Inouye, Purdue University




Different domains can be viewed as unknown
interventions in a Jatent causal space

Other marginals and

conditionals are aligned

Latent space z|d—y, ~ CausalModel
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Image adapted from GlobalWheat dataset images from https://wilds.stanford.edu/datasets/.



https://wilds.stanford.edu/datasets/

Causal representation learning seeks a representation that can
generate the training data but matches the true causal model

Task objective: (Soft) alignment constraints:
“What we want” “What we want to avoid”
* Good generative model * Sparse Mechanism Shift Hypothesis —

* Standard generative model loss Shifts are caused by a spatse
such as VAFE loss change in the causal model.

Loen(g,f) = E[tyae(f(9(x)), x)] * Thus, most conditional
distributions should be aligned

Loion (9)

=Zie; d(P(g(0);1g(x)<j d=1), P(g(x);|g(X)<; d=3))

All dimensions NOT intervened should be aligned, where [ is the intervention set.

Ideas inspired by Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal
representation learning. Proceedings of the IEEE, 109(5), 612-634.



Sparse intervention assumption => misalignment sparsity

(Only a few conditionals are misaligned)
In 2D this means that either the marginal or conditionals are misaligned but not both.

Nothing is aligned Marginal p(z;) is Nothing is aligned Conditional p(z,|z;)
(non-sparse) aligned (sparse) (non-sparse) is aligned (sparse)
A A== Disto | 5 W= Dist 0
0.2 - y Dist 1 mem Dist 1 11
| 0.1
0- 0-
101 10 1 2 1 21
N o ,
0 - n 0- 6 6 01 | 0
> ® 7
~10 A . , , , g : : I =21 ; l
2.5 ]
10 | 10 A 2 »
0 ’,H 0 ’ 0.0 - 01 » >
_10 | T T _10 7 T T 2.5 L T T T T _2 | T T T T
~-10 0 10 -10 0 10 -25 00 25 50 -25 00 25 50
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Alignment
Definitions O




Distribution alignment 1s
the opposite objective of classification

Original Space Optimization Objective Latent Space
Classification /*} /*\
= —
o maxg(P(g(0)d=y), P(g(0)]d=p)) L2 ZC“"‘SS
P(x|d=1) g {”
‘M where g: R?* > R and ¢ is a distribution %
divergence (e.g., KL, JSD, W>) X, R
X9 ;ﬁ; W"‘ »‘ £
3 Distribution alighment */\/*\
}W : g (x) = Zalign —
P(x|d=;) min ¢(P(g(x)ld=1), P(g(x)|d=)) I Jats "
o ‘oo
X1

Optimal solution ;x.va

P(g*(¥)|d=y) = P(g"()|des) EAR.
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Alignment can be with respect to the marginal,

conditional, or joint distribution
A AN i

N \
Marginal alignment {"% e ( ng w‘}, /
Xy % ™ / Zy
P(z1|d=1) = P(z4|d=3) : ? 57 7
- v v
X, Z4
Conditional alighment NS F e %
X _oovw Zy v
P(z;]z1,d=1) = P(23]z1,d=2)  ~ F 2
. X, Z4
"
F Ty
Joint alignment bt ,
X2 Z; E %2 =
P(zy,73|d=1) = P(zq,23]d =) Freasat ez
> -

David I. Inouye, Purdue University



Example: Marginal alignment without
conditional alignment

g 0.2 = Dist 0 W Dist0 | g - @ Dist 0
= 0.2 - i Dist 1 mm Dist 1
C —

5 0.1 0.1
©
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§ 10 = 10 - & 10 - 9

rN: 0 = - 0- N Ny o . 6

o -_ - Y Q\ 0 - v

= -10 1 | |-101

N 10- ' F 10 - } 10 -

N

= i

Q: 07 ) lrF } 0 A [ r tg 0 -

£ gl e |

S -10 - ~10
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Example: Conditional alignment without
marginal alignment

= 0.4 1 ‘
% 0.50 B Dist O B Dist O , . Dist O
= mam Dist 1 17 maw Dist 1 02 | BEm Dist 1
cC . .
S 025
2

0.00 - 0- 0.0 -
T 257 2 - 27
E :
5 0.0 0 - 0 1 \‘
9 -2.54 —21 —2 -
E 2.5 - 2.5 1 2 - »
S )
2 0.0- ’b 0.0 - 0- » »
: » b
S 723° 2.5 -2 1

-25 0.0 2.5 5.0 -25 0.0 2.5 5.0 -2.5 0.0 2.5 5.0

David I. Inouye, Purdue University



Distribution alignment minimizes the
divergence between two distributions

Definition 1: Joint Distribution Alignment
Given samples from the joint distribution P (X, d), distribution alignment is the problem of finding an
aligner g: X X D — Z that minimizes a distribution divergence ¢: P X P — R, between the domain-

conditional distributions: Any distribution divergence that satisfies non-negativity Aligner can depend on
/‘ and ¢(P,Q) = 0 if and only if P = Q (e.g,, KL, JSD, W,). /

domain label 4
melg ¢(P(z|d=1),P(z|d=p)), where z = g(x,d).
g

Definition 2: Conditional Distribution Alignment

Given two variable index sets A, B € {1,2, ..., m}, conditional alignment minimizes an aggregation, defined
by an aggregator {lg_ [-], over all conditional divergences:

%1618 QZ\B[ d(P(z 4 |zg,d=1),P(z4 |25,d=5)) ], where z = g(x,d).

|

Usually this is merely the

expectation over Zg, i.e., Ep(z,) [] 13

David L. Inouye, Purdue University




Constraints on aligners
can be explicit or implicit

* Explicit constraints
X, ifd =1
g(x), otherwise
* Shared aligner between domains, i.e., g(x,d) = §(x)
* Invertible alignet, i.e., 3g~ts.t. Vx, g 1 (g(x,d),d) = x
o Approximately invertible via cycle consistency Af s.t. Vx, f(g(x,d),d) = x

o Translation aligner, i.e., g(x,d) = {

* Implicit (soft-)constraints via other optimization terms
* As in the alignment applications



Alignment Algorithms



Alignment algorithms fall into two broad
categories: adversarial and non-adversarial

* Adversarial alignment was the first and continues to be the most popular
approach to alignment

* Good — Easy to implement, just add a discriminator for the domain
* Good — No restriction on model architectures

* Bad — Very challenging to optimize

* Bad — Hard to evaluate solution

* Non-adversarial algorithms impose alignment via
* Bi-level optimization
* Likelithood-based (either normalizing flows or VAEs)
* Input-convex models
Diffusion models
Optimal transport techniques
Good — Non-adversarial optimization is generally easier and more scalable
Bad — Sometimes tied to specific architectures (e.g., invertible or input-convex)



Alignment Upper Bound (AUB) forms an upper

bound on S divergence via znvertible models

* A variational upper bound of JSD:

Gavs(9) = min X_: Bp(xq)[—108]/g,|Q(g(x D)]

* () is a density model shared among domains

AUB

* g is invertible and | /g dl is the determinant Jacobian of g(-, d)

KL(P(2),Q") — ZqwaH(P(x|d))
' >0 constant

(where P(z) = Y;wy P(z|d))
GJSD

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural :
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286 David I Inouye, Purdue University



https://arxiv.org/abs/2207.02286

AUB optimization provides a cooperative
alternative to adversarial alignment

AUB cooperative alignment problem

min (min 2fs Ep(ria) 1ogl/g|Q (9 )]

ol

j .\ \ g(ﬁ) @2) . /. \.\
/ o\ |
y \_

J / \\

Pixli=l)  P(g(xD)|d=1) P(e(x2)|d=2)  Px|d=2)

* Minimizing g makes distributions closer to current ) (left)

* Minimizing () tightens bound by getting closer to the latent mixture, 1.e.,

2.q P(g(x,d)|d) (right)

Cho, W., Gong, Z., & Inouye, D. |. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 38
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286

David 1. Inouye, Purdue University
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AUB can perform alignment on tabular data

and between multip!

OO | 23450729 Ol 23IYSLETEYT

/ O ) A3YS b7 iy 012345k727

MINIBOONE | GAS | HEPMASS | POWER <0 /| 234§6697¢89 0/a34§5(71 %19

(42) (7) (20) (5) SO \ 23456189 Ol 234567189

LRMF 12.79 6.17 18.49 0.93 YElCe | A4S L7 Y9 ol234Y5b7 9%
AF (MLE) 14.08 6.52 19.37 0.77 S 0C1234Y5L7%9 OV\274S5S7&9
AF (Adv. only) 18.18 -3.15 21.70 -0.39 @ 0/ 239vyE£ a6y 879 0/ R34S5aeaP5% 7
AF (hybrid) 19.49 376 | 21.42 0.43 T7Bl0O 234567 %89 0123456786
Ours 12.11 -7.09 18.26 -1.19 < O(83495¢cT7%9 QI R345€1<%9

1 PAEREEXNER] CEIRELRNERY

These results on 4 benchmark tabular datasets

e domains

AlignFlow (MLE)

Ours

Our AUB algorithm can translate between 10
domains (MNIST digits here) better than the closest
competitor (AlignFlow) for invertible models.
(Original real digits are far left and grid 1s

demonstrate that our algorithm can improve the
AUB alighment measure on test data.

translations to all other digits.)

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural
Information Processing Systems (NeurlPS). Preprint: https://arxiv.org/abs/2207.02286



https://arxiv.org/abs/2207.02286

Alighment problems can be formulated under a

unified alignment framework

Name Kind g(x,d=1) g(x,d=2) z4, 2z Method Other Objectives

Generative models (GAN) [37] Marg. ¢(x) x z - Adversarial -

Unsupervised image-to-image Marg. Gi(xz)st. $(x)st. =z - Adversarial Identity regular-

translation [74, 91, 92] $(51(2)) §1(§2(x)) ization, cycle con-
S S sistency

Domain adversarial NN (DANN) [87] Marg. g(x) g(x) z - Adversarial Classification

Conditional DANN [88, 90] Cond. [¢(x),y] [§(x),y] &(xz) y Adversarial Classification

Invariant Risk Minimization [10] Cond. [§(=z),y] [§(x),y] vy  §(x) Bi-level Opt. Classification

Optimal transport (Monge map) [75] Marg. §(x) x z - Empirical OT Transport cost

Conditional optimal transport [93] Cond. §(za|xp) x4 zo 2z Adversarial Transport cost

Flow-based generation or translation Marg. §i(x)st $H(x)st =z - Likelihood -

[39, 40, 81, 94, 95] 3571 3gt

Fair Variational Autoencoders Marg. §i(z)+e $(x)+e =z - Likelihood Classification

[31, 33, 34]

Table from manuscript in preparation by David 1. Inouye.
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Evaluating alignment is challenging because most divergences are
intractable to estimate given only samples

* Most theoretic divergences ¢ cannot be computed with only samples
* KL divergence
* Jensen-Shannon divergence
* Wasserstein distance

* In practice, papers evaluate using extrinsic and intrinsic metrics

* Extrinsic metrics — These do not directly estimate the divergence ¢ but are consequences
of alignment

* Intrinsic metrics — These directly approximate the divergence ¢ to see if the algorithm
reduced the divergence

* Often, these approximations will be upper or lower bounds on the divergence

* Finally, some divergences are scale-invariant

* Informally, this means that changing the unit of the dimensions (e.g., from inches to
feet) does not affect the divergence



Alignment metrics can be unified under this
common framework

Name Kind Bound ScaleInv. Notes
FID [48] Extr. - No FID is the most common evaluation measure.
Inception Score (IS) [49] Extr. - No Another common evaluation measure.
External task metric Extr. - No Examples: fair classification [35] or domain generalization [10].
f-divergence adv. loss [99] Intr. Lower Yes Adversarial losses are rarely used for evaluation.
Wasserstein adv. loss [100] Intrr Lower No Adversarial losses are rarely used for evaluation.
Flow-based likelihood Intr.  Upper Yes In prior work [41], we unify and generalize AlignFlow [39] and
measures [39—41] LRMF [40] via alignment upper bound (AUB).
VAE-based likelihood Intr.  Upper Yes In Task 2.2, I propose an improved VAE-based alignment objec-
measures [31, 33, 34] tive generalizing my prior work [41].
Empirical (discrete) Intr. - No Quadratic in the number of samples. Variants: Monge via linear
Wasserstein [75, 98] program [75] and entropic via Sinkhorn [98]
Sliced Wassserstein Distance  Intr. - No Only sorting required given 1D projection. Variants: Average
[101, 102] SW [101, 102], max SW [53, 77, 103], tree SW [104]
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Future research opportunities in all areas of
distribution alighment

Alignment

concepts

Alignment
algorithms

Alignment

evaluation

Alignment
applications

* Conditional alignment in particular

e Stable and scalable non-adversarial methods

* More application-agnostic measures
* Rigorous evaluation protocols

 Causal discovery and inference
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