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Current ML performs well 
but lacks important desired qualities

Optimistic perspective
• The next generation of  ML will 

need to exhibit new desired 
properties.
• Fairness – Are the predictions fair w.r.t. 

age or race?
• Robustness – Can the model predict 

accurately even under new 
environment conditions?

• Causality – Can the model estimate 
interventional or counterfactual 
queries?

Pessimistic perspective
• The unintentional misuse of  data by 

algorithms underpins many 
problems in ML.
• Fair ML – Avoids misuse of  age or race 

in predictions.
• Robust ML – Avoids misuse of  

spurious signals that will only work in 
one environment.

• Causal ML – Avoids misuse of  factual 
information to infer erroneous 
interventional or counterfactual 
information.

David I. Inouye, Purdue University
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How can we impose these desired properties 
on ML systems?
• Design model carefully (first wave of  deep learning)

• Improve inductive bias of  model such as CNN and transformer architectures
• Hand-design model to ensure specific property

(e.g., graph models that are invariant to node permutations)

• Train bigger model with more data (second wave of  deep learning)
• Hope more data or computation will produce desired qualities
• Yet, it is still unclear if  this solves any of  the prior problems or just hides them

• Explicitly enforce desired properties via distribution alignment (this talk J )
• Broadly applicable to a wide range of  problems
• Property is implicitly defined by domain labels, which can be elicited from application expert

David I. Inouye, Purdue University
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Distribution alignment is representation learning with
the opposite objective of  classification

Original Space

𝑥! 

𝑃 𝒙|𝑑!"

𝑃 𝒙|𝑑!#
𝑥" 

Representation Learning Objective Latent Space

𝑔∗ 𝑥 = 𝑧$%&''∗ → max
$∈𝒢

𝜙 𝑃 𝑔 𝑥 𝑑!" , 𝑃 𝑔 𝑥 𝑑!#
Classification

where 𝑔:ℝ! → ℝ and 𝜙 is a distribution 
divergence (e.g., KL, JSD, 𝑊!)

min
$∈𝒢

𝜙 𝑃 𝑔 𝑥 𝑑!" , 𝑃 𝑔 𝑥 𝑑!#
𝑔∗ 𝑥 = 𝑧&%()*∗ → 

Optimal solution 
𝑃 𝑔∗ 𝑥 |𝑑+" = 𝑃 𝑔∗ 𝑥 |𝑑+!

Distribution alignment
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Distribution alignment is NOT supervised 
alignment or spatial alignment
• Supervised/point-to-point alignment – Given pairs of  points, learn a 

mapping between them
• Example: (text, image) pairs to learn multi-modal alignment of  text and images
• Example: (English text, Spanish text) pairs to learn translation
• In distribution alignment, no pairing information is available.

• Spatial alignment – Align images from two different perspectives
• Example: Align satellite images of  overlapping regions to combine information
• Example: Align RGB-image with depth-image (e.g., remote sensing)
• Example: Align pixels in frame 1 to frame 2 in video (e.g., video deblurring)
• In distribution alignment, there is no notion of  space, just distributions 

David I. Inouye, Purdue University
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Overview
Three representative 

applications of  distribution 
alignment

• Fair Classification
• Domain Generalization 

(robustness to distribution 
shifts)

• Causal Representation 
Learning

Unified alignment 
framework

• Alignment definitions 
(what is it?)

• Alignment algorithms 
(how to optimize it?)

• Alignment evaluation 
metrics (how to evaluate 
it?)



Alignment 
applications 
can be unified 
as a task 
objective + 
(soft) 
alignment 
constraints
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• Overall goal of  learning
• “What we want”

Task objective

• Ensures the desired property
• “What we want to avoid”

Alignment constraints

David I. Inouye, Purdue University



Application: Fair Classification

David I. Inouye, Purdue University
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Background: Fair classification aims to correct 
historical or unintentional bias in ML systems
• In social ML applications such as loan approval, recidivism prediction (bail), or 

job applications, classification models can be unfair
• Could be caused by bias in historical data 

e.g., bias against minorities in recidivism prediction
• Could be caused by using sensitive attributes unintentionally 

e.g., even though gender is excluded from a loan approval application, other features 
such as name could be highly correlated with gender and used to predict

• Demographic parity – One notion of  fairness that the prediction is 
independent of  the sensitive attribute

𝔼 ℎ 𝑥 𝑑 = 𝔼 ℎ 𝑥
• Demographic parity gap: max! 𝔼 ℎ 𝑥 𝑑 −min!! 𝔼 ℎ 𝑥 𝑑"

• Approach: Learn a fair representation 𝑔 and then classify using this 
representation 𝑓: ℎ 𝑥 = 𝑓 𝑔 𝑥, 𝑑

David I. Inouye, Purdue University
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Fair classification aims to classify correctly 
while controlling for sensitive attributes
Task objective: 
“What we want”
• Accurately predict whether a loan 

application should be approved
• Standard classification loss

ℒ'() 𝑓, 𝑔 = 𝔼 ℓ 𝑓 𝑔 𝑥, 𝑑 , 𝑦

(Soft) alignment constraints: 
“What we want to avoid”
• The prediction must be independent 

of  sensitive attribute 𝑑
• Alignment constraint ℒ*(+,- 𝑔 =
𝜙 𝑃 𝑔 𝒙, 𝑑 𝑑!" , 𝑃 𝑔 𝒙, 𝑑 𝑑!#

10Illustration from: Balunovic, M., Ruoss, A., & Vechev, M. (2021, September). Fair normalizing flows. In International Conference on Learning 
Representations.

Raw representation is 
good for task but 
sensitive attribute can 
be determined

Aligned representation 
is good for task but 
sensitive attribute 
cannot be determined

David I. Inouye, Purdue University



Approach 1: Fair normalizing flows use invertible 
models to provably learn a fair representation
• Assumption 1 – Aligner is invertible, i.e., 𝑔 𝑥, 𝑑  is invertible w.r.t. 𝑥
• Assumption 2 – Data distribution is known (or approximately known)
• Thus, distribution of  𝑧 = 𝑔 𝑥, 𝑑  is known in closed-form as:

𝑃 𝑧|𝑑 = 𝐽- 𝑥|𝑑
./
𝑃 𝑥|𝑑

• And the KL divergence can be directly estimated with samples
ℒ01234
56 𝑔 = 𝜙56 𝑃 𝑧 𝑑7/ , 𝑃 𝑧 𝑑78 + 𝜙56 𝑃 𝑧 𝑑78 , 𝑃 𝑧 𝑑7/

• Final problem minimizes classification and alignment losses:
min
-,:

ℒ;1< 𝑓, 𝑔 + 𝜆ℒ0123456 𝑔

David I. Inouye, Purdue University
11Balunovic, M., Ruoss, A., & Vechev, M. (2021, September). Fair normalizing flows. In International Conference on Learning Representations.



Approach 2: Fair variational autoencoders 
(VAE) leverage well-known upper bounds
• Assumption 1 – Encoder is probabilistic, 𝑔 𝑥, 𝑑 = 𝑃 𝑧 𝑥, 𝑑
• Fact 2 – Mutual information between the latent representation 𝑧 = 𝑔 𝑥, 𝑑  

and the domain label 𝑑 is equivalent to Jensen-Shannon divergence
𝐼 𝑧 = 𝑔 𝑥, 𝑑 , 𝑑 = 𝜙!"# 𝑃 𝑧 𝑑$% , 𝑃 𝑧 𝑑$&

• Fair variational autoencoders upper bounds using a shared prior distribution

• 𝜙#$% 𝑃 𝑧 𝑑&' , 𝑃 𝑧 𝑑&( ≤ min
)
𝔼* − log ) 𝑥 𝑧, 𝑑

* 𝑧 𝑥, 𝑑 𝑄 𝑧

• Others VAE-based works use other upper bounds on mutual information 
including via contrastive estimation

David I. Inouye, Purdue University
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Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2015). The variational fair autoencoder. ICLR, 2016.
Moyer, D., Gao, S., Brekelmans, R., Galstyan, A., & Ver Steeg, G. (2018). Invariant representations without adversarial training. Advances in Neural Information 
Processing Systems, 31.
Gupta, U., Ferber, A. M., Dilkina, B., & Ver Steeg, G. (2021, May). Controllable guarantees for fair outcomes via contrastive information estimation. In Proceedings of 
the AAAI Conference on Artificial Intelligence (Vol. 35, No. 9, pp. 7610-7619).



Application: 
Domain Generalization

David I. Inouye, Purdue University
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Background: A distribution shift means that 
the training and test distributions are different.

David I. Inouye, Purdue University
14Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution 

shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.



Background: Distribution shifts violate the 
standard assumptions in ML that train=test
• Thus, the test accuracy very low even under benign shifts

David I. Inouye, Purdue University
15Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution 

shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.



Domain generalization (DG) aims to predict 
accurately even under distribution shift
• Domain generalization seeks to 

reduce this gap caused by shifts
• A type of  out-of-distribution 

generalization
• The test metric can be seen as a 

generalization of  train-test split 
• Except the test split comes from an 

unseen shifted distribution
• Given data from the training domains, 

find a model that performs well on a 
held-out test domain dataset

David I. Inouye, Purdue University
16Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., ... & Liang, P. (2021, July). Wilds: A benchmark of in-the-wild distribution 

shifts. In International Conference on Machine Learning (pp. 5637-5664). PMLR.



DG Approach 1: Domain-invariant representation learning 
removes domain-specific features to aid DG performance

Task objective: 
“What we want”
• Accurate prediction
• Standard classification loss on 

training domains
ℒ'() 𝑓, 𝑔 = 𝔼 ℓ 𝑓 𝑔 𝒙 , 𝑦

(Soft) alignment constraints: 
“What we want to avoid”
• We want the features to be 

independent of  the domain
• Feature-based alignment 

constraint

ℒ*(+,-
).*/01. 𝑔 =
𝜙 𝑃 𝑔 𝒙 𝑑!" , 𝑃 𝑔 𝒙 𝑑!#

• Notice that aligner is shared across 
domains
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Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016). Domain-adversarial training of neural 
networks. The journal of machine learning research, 17(1), 2096-2030.



DG Approach 1: Domain adversarial neural 
networks aim to align latent features
• Intuition – Competitive game

• Counterfeiter is trying to avoid getting caught
• Police is trying to catch counterfeiter

• Algorithm – Usually alternating optimization 
between min and max
• ℎ,-" = argmax

.
−𝔼 ℓ/0 ℎ 𝑔, 𝑥 , 𝑑

• 𝑔"#$, 𝑓"#$ =
min
%,'

𝔼 ℓ 𝑓 𝑔 𝑥 , 𝑦 − 𝜆𝔼 ℓ() ℎ"#$ 𝑔 𝑥 , 𝑑

• Drawbacks
• Unstable or poorly conditioned optimization
• Lacks domain-agnostic evaluation metrics 

(e.g., unable to check for overfitting)

Adversarial alignment problem
min
%,'

	ℒ*+' 𝑔, 𝑓 + 𝜆ℒ,+-%.,/0 𝑔

min
%,'

𝔼 ℓ 𝑓 𝑔 𝑥 , 𝑦 + 𝜆 max
1
−𝔼 ℓ() ℎ 𝑔 𝑥 , 𝑑

∇

∇

∇ ℒ*+'

∇ ℒ23456

𝑓
ℎ

∇
𝑔

𝑧

Illustration adapted from Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., ... & Lempitsky, V. (2016). Domain-
adversarial training of neural networks. The journal of machine learning research, 17(1), 2096-2030.



DG Approach 2: Domain-invariant predictors is 
an alternative approach to DG
Task objective: 
“What we want”
• Accurate prediction
• Standard classification loss on 

training domains
ℒ'() 𝑓, 𝑔 = 𝔼 ℓ 𝑓 𝑔 𝒙 , 𝑦

(Soft) alignment constraints: 
“What we want to avoid”
• We want the predictors to be 

independent of  the domain
• Predictor-based alignment 

constraint

ℒ*(+,-
H1.I+'/J1 𝑔 =
𝜙 𝑃 𝑦 𝑔 𝒙 , 𝑑!" , 𝑃 𝑦 𝑔 𝒙 , 𝑑!"

• This aligns the conditional distribution of  label 
𝑦 given the features 𝑧 = 𝑔(𝑥)

19
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DG Approach 2: Invariant Risk Minimization (IRM) attempts 
to align conditional distributions via bi-level optimization

• Minimize training error subject to the constraint that the predictive distribution is the 
same across all domains

min
1,3

Σ4ℒ5634 𝑔, 𝑓
s. t. 	𝑃 𝑦 𝑔 𝑥 = 𝑃 𝑦 𝑔 𝑥 , 𝑑 , ∀𝑑

• Assumption 1: Assume that an optimal probabilistic classifier can approximate the 
true predictive distribution for each domain

𝑓K∗ = argmin
M#

ℒNOMK 𝑔, 𝑓P ≈ 𝑃 𝑦 𝑔 𝑥

• Minimize training error such that 𝑓 is optimal classifier across domains
min
1,3

Σ4ℒ5634 𝑔, 𝑓
s. t. 	𝑓 = 𝑓4∗ = argmin

3"
ℒ5634 𝑔, 𝑓7 , ∀𝑑

• This is called a bi-level optimization problem

David I. Inouye, Purdue University
20Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint arXiv:1907.02893.



DG Approach 2: Invariant Risk Minimization (IRM) attempts 
to align conditional distributions via bi-level optimization

• Minimize training error such that 𝑓 is optimal classifier across domains
min
+,-

Σ!ℒ./-! 𝑔, 𝑓
s. t. 	𝑓 = 𝑓!∗ = argmin

-!
ℒ./-! 𝑔, 𝑓" , ∀𝑑

• This is called a bi-level optimization problem

• Bi-level optimization is very difficult similar to adversarial optimization
• Original paper proposes one approximation using gradients of  classifier:

min
',)

Σ*ℒ+,)* 𝑔, 𝑓 + 𝜆 ∇)ℒ+,)* 𝑔, 𝑓
&
&

• If  the gradients are zero across all domains, then 𝑓 may be at an optimal point
• Requires backpropagation through backpropagation (nested gradient computation)

David I. Inouye, Purdue University
21Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint arXiv:1907.02893.



Application: 
Causal Representation Learning

David I. Inouye, Purdue University
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Background: Causal probabilistic models 
implicitly encode the effect of  interventions

23

Stove 
On?

Water 
Boiling?

Implied factorization
𝑃(𝑠𝑡𝑜𝑣𝑒)𝑃(𝑏𝑜𝑖𝑙𝑖𝑛𝑔|𝑠𝑡𝑜𝑣𝑒)

Stove 
On?

Water 
Boiling?

Implied factorization
𝑃(𝑏𝑜𝑖𝑙𝑖𝑛𝑔)𝑃(𝑠𝑡𝑜𝑣𝑒|𝑏𝑜𝑖𝑙𝑖𝑛𝑔)

Both are valid factorizations.
But which factorization is causal?

One idea: The factorization that 
changes the least under an intervention.

Stove 
On?

Water 
Boiling?

Force the 
water to 
boil

Intervened distribution
𝑃 𝑠𝑡𝑜𝑣𝑒 𝛿(𝑏𝑜𝑖𝑙𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒)

Stove 
On?

Water 
Boiling?

Intervened distribution
𝛿 𝑏𝑜𝑖𝑙𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒 b𝑃(𝑠𝑡𝑜𝑣𝑒|𝑏𝑜𝑖𝑙𝑖𝑛𝑔)

Force the 
water to 
boil

The stove distribution is 
the same, i.e., aligned!

The stove distribution is different under 
intervention. b𝑃 𝑠𝑡𝑜𝑣𝑒 𝑏𝑜𝑖𝑙𝑖𝑛𝑔 ≡ 𝑃(𝑠𝑡𝑜𝑣𝑒) David I. Inouye, Purdue University



Background: Causal probabilistic models 
implicitly encode the effect of  interventions
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Stove 
On?

Water 
Boiling?

Implied factorization
𝑃(𝑠𝑡𝑜𝑣𝑒)𝑃(𝑏𝑜𝑖𝑙𝑖𝑛𝑔|𝑠𝑡𝑜𝑣𝑒)

Stove 
On?

Water 
Boiling?

Implied factorization
𝑃(𝑏𝑜𝑖𝑙𝑖𝑛𝑔)𝑃(𝑠𝑡𝑜𝑣𝑒|𝑏𝑜𝑖𝑙𝑖𝑛𝑔)

Both are valid factorizations.
But which factorization is causal?

One idea: The factorization that 
changes the least under an intervention.

Stove 
On?

Water 
Boiling?

Force 
stove on

Stove 
On?

Water 
Boiling?

Intervened distribution
dP boiling 𝛿 𝑠𝑡𝑜𝑣𝑒 = 𝑇𝑟𝑢𝑒

Force 
stove on

The boiling distribution is 
the same, i.e., aligned! Intervened distribution

𝛿 𝑠𝑡𝑜𝑣𝑒 = 𝑇𝑟𝑢𝑒 𝑃(𝑏𝑜𝑖𝑙𝑖𝑛𝑔|𝑠𝑡𝑜𝑣𝑒)

The boiling distribution is 
different under intervention. David I. Inouye, Purdue University



Different domains can be viewed as unknown 
interventions in a latent causal space
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𝑧$

𝑧7

𝑧8

𝑧9

𝑧:

𝑧;𝑧<

Latent space 𝒛|𝑑=> ∼ CausalModel

Observed space 𝒙 = 𝑔?$ 𝒛

𝑧$

𝑧7

𝑧8

𝑧9

𝑧:

𝑧;𝑧<

𝑧$

𝑧7

𝑧8

𝑧9

𝑧:

𝑧;𝑧<

𝒛|𝑑=$ ∼ IntervenedCausalModel 𝒛|𝑑=9 ∼ IntervenedCausalModel

Image adapted from GlobalWheat dataset images from https://wilds.stanford.edu/datasets/.

Conditional 
misalignment

Marginal 
misalignment

Other marginals and 
conditionals are aligned

David I. Inouye, Purdue University
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Causal representation learning seeks a representation that can 
generate the training data but matches the true causal model

Task objective: 
“What we want”
• Good generative model
• Standard generative model loss 

such as VAE loss
ℒ,.- 𝑔, 𝑓 = 𝔼 ℓwxy 𝑓 𝑔 𝑥 , 𝑥

(Soft) alignment constraints: 
“What we want to avoid”
• Sparse Mechanism Shift Hypothesis – 

Shifts are caused by a sparse 
change in the causal model. 
• Thus, most conditional 

distributions should be aligned

26
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Ideas inspired by Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal 
representation learning. Proceedings of the IEEE, 109(5), 612-634.

ℒ01234
STS 𝑔

= ΣU∉W 	𝜙 𝑃(𝑔 𝑥 U|𝑔 𝑥 XU , 𝑑7/), 𝑃(𝑔 𝑥 U|𝑔 𝑥 XU , 𝑑78)
All dimensions NOT intervened should be aligned, where 𝐼 is the intervention set.



Sparse intervention assumption => misalignment sparsity
(Only a few conditionals are misaligned)
In 2D this means that either the marginal or conditionals are misaligned but not both.

27
Ongoing work with Prof. Murat Kocaoglu, Sean Kulinski, Zeyu Zhou, and Ruqi Bai.

Conditional 𝑝 𝑧9 𝑧$  
is aligned (sparse)

Marginal 𝑝 𝑧$  is 
aligned (sparse)

Nothing is aligned
(non-sparse)

Nothing is aligned
(non-sparse)

David I. Inouye, Purdue University



Alignment 
Definitions

28
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Distribution alignment is
the opposite objective of  classification

Original Space

𝑥! 

𝑃 𝒙|𝑑!"

𝑃 𝒙|𝑑!#
𝑥" 

Optimization Objective Latent Space

𝑔∗ 𝑥 = 𝑧$%&''∗ → max
$

𝜙 𝑃 𝑔 𝑥 𝑑!" , 𝑃 𝑔 𝑥 𝑑!#
Classification

where 𝑔:ℝ! → ℝ and 𝜙 is a distribution 
divergence (e.g., KL, JSD, 𝑊!)

min
$
𝜙 𝑃 𝑔 𝑥 𝑑!" , 𝑃 𝑔 𝑥 𝑑!#

𝑔∗ 𝑥 = 𝑧&%()*∗ → 

Optimal solution 
𝑃 𝑔∗ 𝑥 |𝑑+" = 𝑃 𝑔∗ 𝑥 |𝑑+!

Distribution alignment
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Alignment can be with respect to the marginal, 
conditional, or joint distribution

30
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Marginal alignment
𝑃 𝑧/|𝑑7/ = 𝑃 𝑧/|𝑑78 	

𝑥! 

𝑥" 

𝑥! 

𝑥" 

𝑥! 

𝑥" 

𝑧! 

𝑧" 

𝑧! 

𝑧" 

𝑧! 

𝑧" 

Conditional alignment
𝑃 𝑧8|𝑧/, 𝑑7/ = 𝑃 𝑧8|𝑧/, 𝑑78

Joint alignment
𝑃 𝑧/, 𝑧8|𝑑7/ = 𝑃 𝑧/, 𝑧8|𝑑78



Example: Marginal alignment without 
conditional alignment

31
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Example: Conditional alignment without 
marginal alignment

32
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Distribution alignment minimizes the 
divergence between two distributions

33

Definition 1: Joint Distribution Alignment
Given samples from the joint distribution 𝑃(𝒙, 𝑑), distribution alignment is the problem of  finding an 
aligner 𝑔: 	𝒳	×	𝒟 → 𝒵 that minimizes a distribution divergence 𝜙:𝒫	×	𝒫 → ℝ- between the domain-
conditional distributions:

min
1∈𝒢

	𝜙 𝑃 𝒛	 𝑑+" , 𝑃 𝒛	 𝑑+!)) , where	 𝒛 ≡ 𝑔 𝒙, 𝑑 .

Aligner can depend on 
domain label d

Definition 2: Conditional Distribution Alignment
Given two variable index sets 𝒜,ℬ ∈ 1,2, … ,𝑚 , conditional alignment minimizes an aggregation, defined 
by an aggregator  Ω𝒵ℬ ⋅ , over all conditional divergences:

min
1∈𝒢

Ω𝒵ℬ[	𝜙 𝑃 𝒛𝒜	 𝒛ℬ, 𝑑+" , 𝑃 𝒛𝒜	 𝒛ℬ, 𝑑+!))	] , where	 𝒛 ≡ 𝑔 𝒙, 𝑑 .	

Usually this is merely the 
expectation over 𝒛ℬ , i.e., 𝔼$ 𝒛ℬ ⋅

Any distribution divergence that satisfies non-negativity 
and 𝜙 𝑃, 𝑄 = 0 if  and only if  𝑃 = 𝑄 (e.g., KL, JSD, W2).

David I. Inouye, Purdue University



Constraints on aligners 
can be explicit or implicit
• Explicit constraints

• Translation aligner, i.e., 𝑔 𝒙, 𝑑 = 7 𝒙, if	𝑑 = 1
;𝑔 𝒙 , otherwise

• Shared aligner between domains, i.e., 𝑔 𝒙, 𝑑 = ;𝑔 𝒙
• Invertible aligner, i.e., ∃𝑔|"	s. t. 	∀𝒙, 𝑔|" 𝑔 𝒙, 𝑑 , 𝑑 = 𝒙

• Approximately invertible  via cycle consistency ∃𝑓	s. t. 	∀𝒙, 𝑓 𝑔 𝒙, 𝑑 , 𝑑 ≈ 𝒙

• Implicit (soft-)constraints via other optimization terms
• As in the alignment applications

David I. Inouye, Purdue University
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Alignment Algorithms
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Alignment algorithms fall into two broad 
categories: adversarial and non-adversarial
• Adversarial alignment was the first and continues to be the most popular 

approach to alignment
• Good – Easy to implement, just add a discriminator for the domain
• Good – No restriction on model architectures
• Bad – Very challenging to optimize
• Bad – Hard to evaluate solution

• Non-adversarial algorithms impose alignment via 
• Bi-level optimization 
• Likelihood-based (either normalizing flows or VAEs)
• Input-convex models
• Diffusion models
• Optimal transport techniques
• Good – Non-adversarial optimization is generally easier and more scalable
• Bad – Sometimes tied to specific architectures (e.g., invertible or input-convex)

David I. Inouye, Purdue University
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Alignment Upper Bound (AUB) forms an upper 
bound on JS divergence via invertible models
• A variational upper bound of  JSD:

 𝜙-./ 𝑔 = min
0∈𝒬

∑*$%3 𝔼4 𝒙 𝑑 −log 𝐽'1 𝑄 𝑔 𝒙, 𝑑

• 𝑄	is a density model shared among domains
• 𝑔 is invertible and 𝐽+@  is the determinant Jacobian of  𝑔 ⋅, 𝑑

• Bound gap is exactly 𝐾𝐿 ∑*𝑤*𝑃 𝑧 𝑑 , 𝑄 𝒛
• Any 𝑄 provides an upper bound on JSD + const

37Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 
Information Processing Systems (NeurIPS). Preprint: https://arxiv.org/abs/2207.02286 David I. Inouye, Purdue University

AUB

GJSD

gap

𝐾𝐿 𝑃 𝑧 ,𝑄∗ −∑#𝑤#𝐻 𝑃 𝑥 𝑑  
≥ 0 constant

	where	𝑃 𝑧 = ∑#𝑤# 𝑃 𝑧 𝑑 	

https://arxiv.org/abs/2207.02286


AUB optimization provides a cooperative 
alternative to adversarial alignment

• Minimizing 𝑔 makes distributions closer to current 𝑄 (left)
• Minimizing 𝑄 tightens bound by getting closer to the latent mixture, i.e., 
∑q 𝑃 𝑔 𝑥, 𝑑 𝑑  (right)
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AUB cooperative alignment problem
 min
1

min
=∈𝒬

∑?+"@ 𝔼A 𝒙 𝑑 log 𝐽1$ 𝑄 𝑔 𝒙, 𝑑

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 
Information Processing Systems (NeurIPS). Preprint: https://arxiv.org/abs/2207.02286 David I. Inouye, Purdue University
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AUB can perform alignment on tabular data 
and between multiple domains

AlignFlow (MLE) Ours

39

These results on 4 benchmark tabular datasets 
demonstrate that our algorithm can improve the 
AUB alignment measure on test data.

Our AUB algorithm can translate between 10 
domains (MNIST digits here) better than the closest 
competitor (AlignFlow) for invertible models. 
(Original real digits are far left and grid is 
translations to all other digits.)

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 
Information Processing Systems (NeurIPS). Preprint: https://arxiv.org/abs/2207.02286 David I. Inouye, Purdue University
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Alignment problems can be formulated under a 
unified alignment framework

David I. Inouye, Purdue University
40Table from manuscript in preparation by David I. Inouye.



Alignment 
Evaluation
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Evaluating alignment is challenging because most divergences are 
intractable to estimate given only samples

• Most theoretic divergences 𝜙 cannot be computed with only samples
• KL divergence
• Jensen-Shannon divergence
• Wasserstein distance

• In practice, papers evaluate using extrinsic and intrinsic metrics
• Extrinsic metrics – These do not directly estimate the divergence 𝜙 but are consequences 

of  alignment
• Intrinsic metrics – These directly approximate the divergence 𝜙 to see if  the algorithm 

reduced the divergence
• Often, these approximations will be upper or lower bounds on the divergence
• Finally, some divergences are scale-invariant

• Informally, this means that changing the unit of  the dimensions (e.g., from inches to 
feet) does not affect the divergence

David I. Inouye, Purdue University
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Alignment metrics can be unified under this 
common framework

David I. Inouye, Purdue University
43Table from manuscript in preparation by David I. Inouye.



Future research opportunities in all areas of  
distribution alignment

• Conditional alignment in particularAlignment 
concepts

• Stable and scalable non-adversarial methodsAlignment 
algorithms

• More application-agnostic measures
• Rigorous evaluation protocols

Alignment 
evaluation

• Causal discovery and inferenceAlignment 
applications


