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Why study generative models?

» Sketching realistic photos

> Style transfer

» Super resolution

Much of material from: Goodfellow, 2012 tutorial on GANs.
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Why study generative models?

> Emulate complex physics
simulations to be faster

> Reinforcement learning -

Attempt to model the real
p . / / \
world so we can simulate < % X
possible futures LN AN
OX" % o'x‘ x 'xl v !x' 5% X, XX

Much of material from: Goodfellow, 2012 tutorial on GANs.
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Outline of
Generative
Adversarial

Networks

(GANS)

Introduction

e Motivation for generative models
e Overview of training generative models

AN modade

e No explicit density
e Only samples available

GAN objective

e |ntuition as adversarial game
e Mathematics via min-max optimization
e Derivation of theoretical solution as JSD

Practical challenges of GANs

e Gap between theory and practice

¢ Vanishing gradient issue of JSD

e Failure to converge (min-max optimization)
e Mode collapse

e Evaluation (IS, FID)




How do we learn these generative models?

> Primary classical approach is MLE

> Density function is explicit parameterized by 6
> Examples: Gaussian, Mixture of Gaussians

> Problem: Classic methods struggle to model very
high dimensional spaces like images

» Remember a 256x256x3 image is roughly 200k

dimensions
Deep generative models
e RN
Explicit density Implicit density
P R GAN
i A
Tractable density Approximate density

PixelCNN VAE
RealNVP
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on-gans-and-

Maybe not a problem: GMMs compared to GANs

http://papers.nips.cc/paper/7826

gmmes.pdf
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http://papers.nips.cc/paper/7826-on-gans-and-gmms.pdf
http://papers.nips.cc/paper/7826-on-gans-and-gmms.pdf

VAEs are one way to create a generative model
for images though images are blurry

https://github.com/WojciechMormul/vae



Maybe not a drawback...
VQ-VAE-2 at NeurlPS 2019

Generated high-quality images
(probably don’t ask how long it
takes to train this though...)

Razavi, A., van den Oord, A., & Vinyals, O.
(2019). Generating diverse high-fidelity
images with vg-vae-2. In Advances in

Neural Information Processing
Systems (pp. 14866-14876).
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Newer (not necessarily better) approach: Train
generative model without explicit density

» VAEs had explicit density function
(i.e., mathematical formula for density

p(x;0))

> In GANs, we just try learn a sample
generator

> Implicit density (p(x) exists but cannot
be written down)

» Sample generation is simple
>z ~pyeg., z~N(0,1) e RO

> Gg(z) = x ~ pg(x)
> Where G is a deep neural network

David I. Inouye 8



Unlike VAEs, GANs do not (usually) have
inference networks

Input Output
I —
Xi M X ~p(x;|G(z))
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X = G(z)
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No pair of original and

reconstructed
How to train?
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Key training challenge: Comparing two
distributions known only through samples

> In GANs, we cannot produce pairs of original and
reconstructed samples as in VAEs

» But have samples from original data and generated
distributions
Ddata — { i1 X5 Pdata ()
= {X l}l 1’ Xi ~ pg(le)

> How do we compare two distributions only through
samples?
» Fundamental, bigger than generative models
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GAN objective:
Could we use KL divergence as in MLE training?

> We can approximate the KL term up to A constant

. Pdata(X)
KL (pdata(x); pg (X)) _ [Epdata log pg(x)
— IIEpdata il lOg pg (X) + II3Pdata [Og Pdata (X)]
~E, [-logp,(x)]+ constant

— Zi — lOg pg (Xl) + constant

— Zi — 10g pg (xl-) + constant

Because GANs do not have an explicit density, we
cannot compute this KL divergence.
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GAN objective: GANs introduce the idea of
adversarial training for estimating the distance
between two distributions

> GANs approximate the Jensen-Shannon
Divergence (JSD) closely related to KL divergence

> GANSs optimize both the JSD approximation and
the generative model simultaneously

> A different type of two network setup

> Broadly applicable for comparing distributions
only through samples




GAN objective mathematics:
Competitive game between two players

» Abstract formulation as minimax game

mGjn max Exepy.ca llogD(x)] + E,~p,_ [108 (1 - D(G(Z)))l

> D is a probabilistic binary classifier, i.e., output is
probability between 0 and 1

> G must output an object that is the same shape as
the input x

> Minimax/adversarial : “Minimize the worst case
(max) loss”

> What does this adversarial objective mean?
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GAN objective intuition: Competitive game
between two players

> Intuition: Competitive game between two
players
> Counterfeiter is trying to avoid getting caught

> Police is trying to catch counterfeiter

minmax Ex_p,, llog D(x)] + E,p, ’108 (1 - D(G(Z)))]

> Analogy with GANs
» Counterfeiter = Generator denoted G
» Police = Discriminator denoted D




GAN objective in practice:
Train two deep networks simultaneously

minmax Eyp,,, [log D(x)] + Ez-p, [log (1 - D(G(Z)))]

Training set Discriminator
Random E— {Fa Ke

— 7

Generator Fake image

https://www.freecodecamp.org/news/an-intuitive-introduction-to-
generative-adversarial-networks-gans-7a2264a81394/
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GAN Theory: Why would this objective be helpful
in learning the model? — Connection to JSD

» Jensen Shannon Divergence is a symmetric version of KL divergence

JSD(p(x), q(x))
1 1 1 1
= —KL <p(X),§(P(X) + q(x))) + EKL (CI(x);E(P(X) + Q(x)))

2

1 1

> JSD also has the property of KL:
JSD (pdata, pg) = 0and = Oifand only if pg4tq = 0y

» Two optimization components (like in VAE but different):
> Inner maximization over discriminator approximates JSD
» Quter minimization minimizes this JSD approximation
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GAN Theory: Why would this objective be helpful
in learning the model? — Connection to JSD

> GAN optimization:
» Inner maximization over discriminator D
approximates JSD

» Quter minimization over generator G minimizes this
JSD approximation

> Compare to VAE optimization:
> Inner minimization over g approximates KL

> Outer minimization over p, minimizes this KL
approximation




Discriminator

GAN Theory: The discriminator 9@6?71 N
seeks to be optimal classifier AT @@{Fake
ﬁgm ¢

Generator Fake image

> Let’s look at the inner maximization problem
D* = arg;nax Ex~pgae, 108 D(X)] + E;pp [log (1 — D(G(z)))]

» Given a fixed G, the optimal discriminator is the
optimal Bayesian classifier

Paata(x)
Paata(X) + Pg (x)

D*(x) =p*(y =1|x) =

David I. Inouye




GAN Theory: Derivation for the optimal
discriminator

> Given a fixed G, the optimal discriminator is the optimal classifier
between images

 C(6) =max Eyopg,,, [log DCO] + B,y [log (1= D(6(2))]
, — mDaX IEx"’pdata [logD(X)] + IEx~pg [log(l — D(x))] Opposite of

reparametrization trick! ©

> = mDaxf Pdata(¥)log D(x) dx + [ pg()log (1 — D(x)) dx
= max [ paata()log D(x) + py(W)log (1 — D(x))dx

y — mDaxf a,logy, + b, log(1 — vy,) dx

>»Max of alogy + blog(1 —y)isy* = .

- g a+b’
> (Hint: Take derivative and set to 0)
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GAN Theory: The generator seeks
to produce data that is like real data

> Given that the inner maximization is perfect, the inner
minimization is equivalent to Jensen Shannon
Divergence for the given G:

C(G) = max V(D,G)
= 2JSD (pdata,pg) + constant

» Thus, the optimal generator G™ will generate samples
that perfectly mimic the true distribution:

arg min C(G) = arg min JSD (pdata, pg)
G G
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GAN Theory: Derivation of inner maximization
being equivalent to JSD

» C(G) = max Ex~pgaca 108D ()] + E,p [108 (1 — D(G(Z)))]
= max By _p,.., [10g D] + Eyop, [log(1 — D())]
= Exmpgara 108 D" (O] + Eyp, [log(1 — D* ()]

>=]E

>

E

v
I
=3

X~Pdata

>

E

X~Ddata

X~Pdata

X~Pdata

Pdata(X) - - ( —_ Pdata(*) )]
log pdata(x)+pg(X)_ + [Ex~pg lOg 1 pdata(x)'l'pg(x)
[ Pdata(X) - - ( pg(X) )]
log e to+p, | T Expg 108\ o i 0
S T O I Pe®)
0 S _h 0)
g%(pdata(X)+pg(X))_ g i g %(pdata(x)-i-pg(x)) -
lo Pdata (%) + E:_ A llo pg(X) — log4
g%(pdata(f)+ﬁg(f))_ X~Pg I 5 %(pdata(X)+pg(x)) | 5

> = ZJSD(pdata »pg) — 1084‘

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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Recap of GAN theory: Inner maximization is
equivalent to JSD but only at the current G

» Overall GAN adversarial (min-max) problem:

min max Ex~pyaca 108D ()] + Ezp, [108 (1 ~ D(G(Z)))]

» Optimal solution to inner maximization problem
X
D*(x) _ pdata( )
Pdata(x) + Pg (x)
» Using this solution, the inner problem is equivalent to JSD:
C(6) :=max V(D,G) = V(D",G) = 2 JSD(pdata  Pg) — log4

> In theory, we can then update our G via
VeC(G) = ViJSD(pdatas Pg) = VeV (D", G)

> However, after updating G, the max must be solved again (at
least for this theory to hold).
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Practical
challenges
In training

GANS

David I. Inouye

Gap between theory and
practice

Vanishing gradient issue of JSD

Failure to converge (min-max
optimization)

Mode collapse

Evaluation (IS, FID)




What if inner maximization is not perfect?

> Suppose the true maximum is not attained

C(G)
= 103X By p,, [108 DOO)] + Bz, [log (1 - D(G(2))
> Then, C(G) becomes a lower bound on JSD

C(G) < €(G) =JSD(Paara(*), Pyx))

» However, the outer optimization is a
minimization
min max V (D, G) ~ min C(G
inmax V (D, 6) ~ min C(6)

> |deally, we would want an upper bound like
in VAEs

> This can lead to significant training
instability

David I. Inouye




Great! But wait... This theoretical analysis
depends on critical assumptions

1. Assumptions on possible D and G
1. Theory—All possible D and G
2. Reality — Only functions defined by a neural network

2. Assumptions on optimality
1. Theory — Both optimizations are solved perfectly
2. Reality — The inner maximization is only solved
approximately, and this interacts with outer minimization
3. Assumption on expectations
1. Theory — Expectations over true distribution

2. Reality — Empirical expectations over finite sample; for
images, much of the high-dimensional space does not have
samples

> GANSs can be very difficult/finicky to train

David I. Inouye




Common problems with GANs: Vanishing gradients
for generator caused by a discriminator that is “too

77

gom: https://developers.google.com/machine-learning/gan/problems

> Vanishing gradient means V.V (D, G) = 0.
» Gradient updates do not improve G

» Theoretically, this is an issue of JSD

M2 =2.5 H2=5 M2=8 [ e e
0.4 1 . ] 0.6 A
0.31 o 0.4 -
28

0.2 1 1 ' 024 — JsD

4 i 4 Max JSD
o 0.0 - T T T T T
0.0 1. A T | . : : -10 -5 0 5 10

-10 0 10 -10 0 10 -10 0 10 M2

» Practically, careful balance during training required:
» Optimizing D too much leads to vanishing gradient
> But training too little means it is not close to JSD

Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks.
In International conference on machine learning (pp. 214-223). PMLR.
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Common problems with GANs: Vanishing gradients
for generator caused by a discriminator that is “too

77

gom: https://developers.google.com/machine-learning/gan/problems

> Vanishing gradient means V;V (D, G) =
» Gradient updates do not improve G

» Modified minimax loss for generator (original GAN)

mgn [Epg [log (1 — D(G(Z)))] ~ mGin IEpZ[— logD(G(Z))]

> Wasserstein GANs

V(D,G) =E,,  [D(x)]—E,|[D(G(2))]

where D is 1-Lipschitz (special smoothness property).

Gulrajani, |., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of
wasserstein gans. In Advances in neural information processing systems (pp. 5767-5777).
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Common problems with GANSs: Failure to converge
because of minimax and other instabilities

From: https://developers.google.com/machine-learning/gan/problems o —mmms | ] ] ‘ s

> Loss function may oscillate or / 1 () 1
never converge - =

I i
» Dicini fdi ibuti \i':".'.o::;?, ‘:‘:::Q:L/';'
Disjoint support of distributions

> Optimal JSD is constant value (i.e., no  ©veme=o @woncre=s
gradient information) Al ¥ =
> Add noise to discriminator inputs kiR
(similar to VAEs) e G

B o Lot o]

SRR AR

> J sttty
Regularization of parameter EEEEET YRRy

. SRS i S B A Y 1

We I g h t S (g) Gradient penalty (h) Gradient penalty (CR)

Arjovsky, M., & Bottou, L. (2017). Towards principled Mescheder, L., Geiger, A., & Figz_ur L K Cohn\'crgence [..)ropenic.s of different .GAN training al-
L . . . r P gorithms using alternating gradient descent with recommended
methods for training generative adversarial Nowozin, S. (2018, July). Which number of discriminator updates per generator update (ng = 1
networks. arXiv preprint arXiv:1701.04862. training methods for GANs do if not noted otherwise). The shaded area in Figure 3¢ visualizes
actually converge?. In International the set of forbidden values for the discriminator parameter 1. The
https://machinelearningmastery.com/practical- conference on machine BN SNl
guide-to-gan-failure-modes/ learning (pp. 3481-3490). PMLR.
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Common problems with GANs: Mode collapse
hinders diversity of samples

From: https://developers.google.com/machine-learning/gan/problems

6 6
» Wasserstein GANSsS i "
2 2
0 0
> Unrolled GANs § |y W
> Trained on multiple I I —
discriminators simultaneously () True Data (£) GAN
Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2016). Unrolled generative http://papers.nips.cc/paper/6923-veegan-reducing-mode-

adversarial networks. arXiv preprint arXiv:1611.02163.

collapse-in-gans-using-implicit-variational-learning.pdf
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https://software.intel.com/en-us/blogs/2017/08/21/mode-collapse-in-gans
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Evaluation of GANSs is quite challenging

> In explicit density models, we could use test log
likelihood to evaluate

» Without a density model, how do we evaluate?

> Visually inspect image samples
> Qualitative and biased
» Hard to compare between methods




Common GAN metrics compare latent
representations of InceptionV3 network

Extract features

from last layers
Grid Size Reduction

(with some modifications) Grid Size Reduction and compare
Input: 299x299x3, IOutput:8x8x2048 2% Inception Module C
5x Inception Module A 4x Inception Module B L
N
i i
-\
11
Convolution Input: g)ustp;g“s
299x299x3 x8x
- :Ag‘;ﬁl S Final part:8x8x2048 -> 1001
#= Concat i S
s Dropout Auxiliary Classifier
sm Fully connected
am Softmax

https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2818-2826).
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Inception score (IS) considers both clarity of
images and diversity of images

» Extract Inception-V3 distribution of predicted labels,
Pinceptionv3 Eﬂxi); VX,

> Images should have “meaningful objects”, i.e., p(y|x;)
has low entropy

» The average over all1generated images should be
diverse, i.e., p(y) = =X; p(¥]x;) should have high
entropy "

» Combining these two (higher is better):

IS = exp (Ey, [KL(p(y12),p())])
» Consider if p(y|x) = p(y), i.e., all images give the same
distribution over images

> Either, all images are indistinct (e.g., they don’t look like
images so predictions are random)

> Or, all images are the same (e.g., all images are dog)

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances
in Neural Information Processing Systems (pp. 2234-2242).
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Frechet inception distance (FID) compares
latent features from generated and real images

> Problem: Inception score ignores real images
> Generated images may look nothing like real images

> Extract latent representation at last pooling layer of Inception-
V3 network (d = 2048)

> Compute empirical mean and covariance for real and
generated from latent representation

Hdata 2:data and Hg Zg
> FID score:

_1
FID = llnaata — #gll” + T (Saata + 5 — 2(ZauaZs) ?)

» Considers both mean and covariance of latent distribution

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update rule converge
to a local nash equilibrium. In Advances in neural information processing systems (pp. 6626-6637).
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FID correlates with common distortions

and corruptions

FID
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Randomly add ImageNet
images unlike celebrity dataset

Figure from Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., & Hochreiter, S. (2017). Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in neural information processing systems (pp. 6626-6637).
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GAN Summary: Impressive innovation with
strong empirical results but hard to train

> Good empirical results on generating sharp
Images

» Training is challenging in practice

» Evaluation of generative models is challenging
(and still unsolved in my opinion)




Excellent online visualization and demo of GANs

» https://poloclub.github.io/ganlab/
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