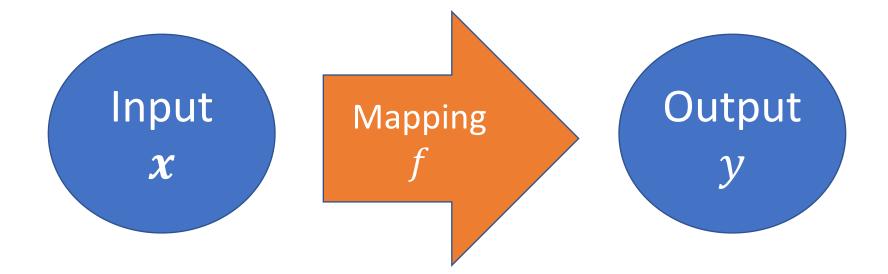
Introduction to Machine Learning (and Notation)

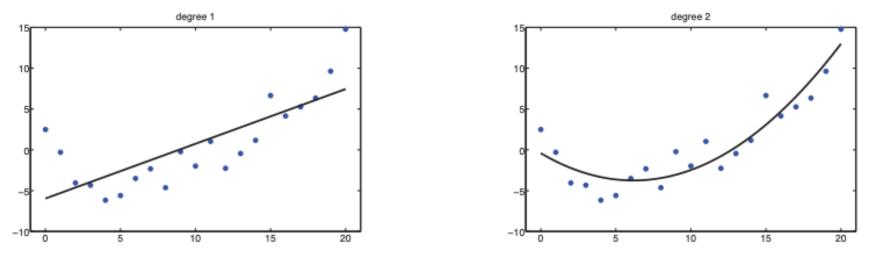

David I. Inouye

Outline

Supervised learning

- Regression
- Classification
- Unsupervised learning
 - Dimensionality reduction (PCA)
 - Clustering
 - Generative models
- Other key concepts
 - Generalization
 - No free lunch theorem

The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output


The goal of <u>supervised learning</u> is to estimate a mapping (or function) between input and output given only input-output examples

The set of input-output pairs is called a <u>training set</u>, denoted by $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$

- lnput x_i
 - Called <u>features</u> (ML), <u>attributes</u>, or <u>covariates</u> (Stats).
 Sometimes just <u>variables</u>.
 - Can be <u>numeric</u>, <u>categorical</u>, <u>discrete</u>, or <u>nominal</u>.
 - Examples
 - [height, weight, age, gender]
 - $[x_1, x_2, \dots, x_d]$ A *d*-dimensional vector of numbers
 - Image
 - Email message
- Output y_i
 - Called output, response, or target (or label)
 - ▶ <u>Real-valued/numeric</u> output: e.g., $y_i \in \mathcal{R}$
 - <u>Categorical</u>, <u>discrete</u>, or <u>nominal</u> output: y_i from *finite* set, i.e., $y_i \in \{1, 2, \dots, c\}$

If the output y_i is numeric, then the problem is known as <u>regression</u>

NOTE: Input *x* does not have to be numeric. Only the output *y* must be numeric.

- Given height x_i, predict age y_i
- Predict GPA given SAT score
- Predict SAT score given GPA
- Predict GRE given SAT and GPA

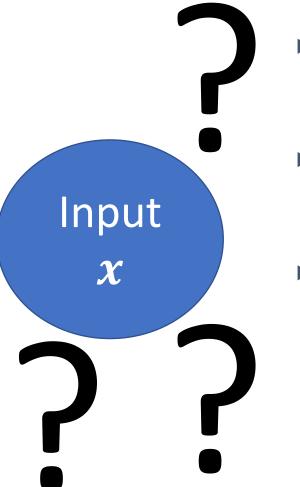
If output is <u>categorical</u>, then the problem is known as <u>classification</u>

Given height x, predict "male" (y = 0) or "female" (y = 1)

Given salary x₁ and mortgage payment x₂, predict defaulting on loan ("yes" or "no") predicted: cat

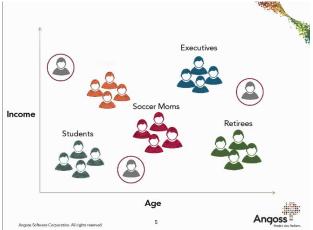
predicted: dog

predicted: cat



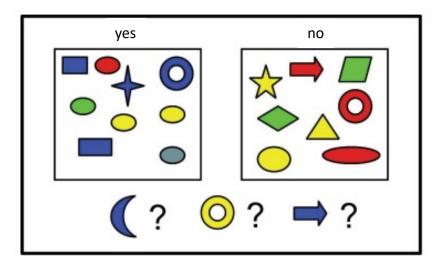
predicted: dog

The goal of <u>unsupervised learning</u> is to model or understand the input data directly



- Dimensionality reduction
- Clustering
- Generative models
- "What I cannot create I do not understand"
- Richard Feynman

In unsupervised learning, the training set is only a set of input values $\mathcal{D} = \{x_i\}_{i=1}^n$

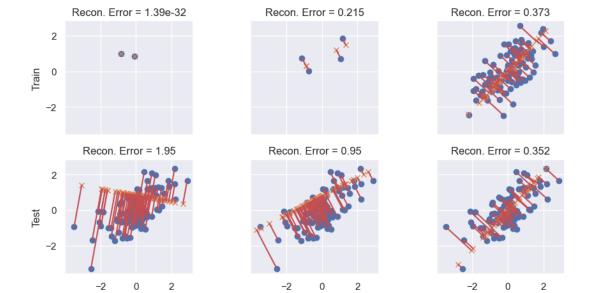

- [Dimensionality reduction]
 Estimate a single number that summarizes all variables of wealth (e.g. credit score)
- [Clustering] Estimate natural groups of customers
- [Generative Models] Estimate the distribution of normal transactions to detect fraud (anomalies)

<u>Generalization</u> beyond the training set is the main goal of learning

d features/attributes/covariates

		Color	Shape	Size (cm)	Is it good?	<i>y</i> ₁ <i>y</i> ₂
n samples/ observations/ examples	<i>x</i> ₁ <i>x</i> ₂	Blue	Square	10	yes	
		Red	Ellipse	2.4	yes	
		Red	Ellipse	20.7	no	

Example from Machine Learning: A Probabilistic Perspective, Ch. 1, Kevin P. Murphy, 2012.


<u>Generalization</u> beyond the training set is the main goal of learning

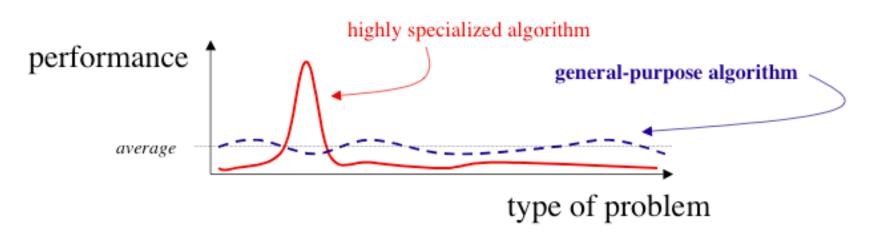
	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	- Training error slightly lower than test error	 Low training error Training error much lower than test error High variance
Regression			myst
Classification			

Original source for figure unknown.

What does generalization look like for *unsupervised learning*?

Generalization in dimensionality reduction
 Objective on train may be small but test may be large

Generalization in generative models can be understood through the view of log likelihood.


All models are approximations All models make assumptions

Assumptions are never perfect

but some models are useful."*

No Free Lunch Theorem

"All models are wrong,

* George Box (Box and Draper 1987, page 424).