
Markov Decision Processes
David I. Inouye

The agent and environment are the two key
actors in RL – How should they be defined?
• Example: Humanoid robot
• Is the “agent” the whole robot?
• What “actions” can the “agent” take?

• Walk forward?
• Increase power to left leg motor?

• The agent is probably the “controller” of the robot
• In fact, the position of arms and legs might be part of the

“environment” (e.g., they could be stuck or lose power)
• Suppose a leg breaks, the controller cannot fix the

leg by itself so the leg is actually a part of the
environment
• The agent could put more power to the other leg and try

to balance on one leg but it does not have direct control
of the leg

David I. Inouye, Purdue University
2

The agent and environment are the two key
actors in RL – How should they be defined?
• Example: Oil refinery
• Is the “agent” the whole refinery?
• What “actions” can the “agent” take?

• Produce x amount of crude oil?
• Change temperature of this module?
• Increase the electricity going to fan or heater?

• The agent is again just the “controller” part of
the refinery
• Each module may have its own controller/agent
• The top-level controller can only “ask” for

something (i.e., a command) but it may not happen
(e.g., something breaks or impossible to fulfill)

David I. Inouye, Purdue University
3

The agent and environment are the two key
actors in RL – How should they be defined?
• The agent should only be defined as the part

that can be directly and explicitly controlled
via concrete actions
• Actions – Select how much power send to each

robotic motor
• Actions – Change fan speed
• Actions – Request subcontrollers to produce a

certain amount
• Note: The boundary should be defined by what can

be controlled rather than what is known
• The environment is anything that is NOT the

agent (I’d call it the non-agent more precisely)
• Actual position of the robot body
• Actual temperature in boiler

David I. Inouye, Purdue University
4

Markov Decision Processes (MDP) mathematically
formalize RL problems via random variables
• Sensation / Observation
• Observing the environment
• Encoded as a random variable called state 𝑆!

• Action
• Agent’s ability to interact with the environment.
• Encoded as a random variable called action 𝐴!

• Reward
• Immediate feedback from the environment
• Encoded as a random variable called reward 𝑅!

David I. Inouye, Purdue University
5

MDPs model a discrete sequence
of states, actions, and rewards
• At each discrete timestep 𝑡
• Agent receives environment state

𝑆! ∈ 𝒮
• Agent decides action based on state,

𝐴! 𝑆! ∈ 𝒜 𝑆!
• Agent receives reward and new state

𝑅!"# ∈ ℝ, 𝑆!"# ∈ 𝒮
• This creates a sequence of state, action,

reward:
𝑆!, 𝐴!, 𝑅", 𝑆", 𝐴", 𝑅#, 𝑆#, 𝐴#, 𝑅$, …

David I. Inouye, Purdue University
6

MDPs model the joint distribution of this sequence
by assuming conditional independence
• Using the chain rule, we could define the probability of the following sequence
𝑆$, 𝐴$, 𝑅#, 𝑆#, 𝐴#, 𝑅%, 𝑆%, 𝐴%, 𝑅&, …
𝑝 𝑆$ 𝑝 𝐴$ 𝑆$ 𝑝 𝑆#, 𝑅# 𝑆$, 𝐴$ 𝑝 𝐴# 𝑆$, 𝐴$, 𝑆#, 𝑅# 𝑝 𝑆%, 𝑅% 𝑆$, 𝐴$, 𝑆#, 𝑅#, 𝐴# …
• MDPs assume conditional independence

• Action only depends on current state
• New state and reward only depend on current state and action (Markov part of MDP)

𝑝 𝑆! 𝑝 𝐴! 𝑆! 𝑝 𝑆", 𝑅" 𝑆!, 𝐴! 𝑝 𝐴" 𝑆!, 𝐴!, 𝑆", 𝑅" 𝑝 𝑆#, 𝑅# 𝑆!, 𝐴!, 𝑆", 𝑅", 𝐴" …
• The environment’s dynamics are completely represented by:

𝑝 𝑆!, 𝑅! 𝑆!'#, 𝐴!'#
• The agent’s dynamics are completely represented by a policy:

𝜋 𝐴! 𝑆! ≔ 𝑝 𝐴! 𝑆!

David I. Inouye, Purdue University
7

The goal or ultimate objective is to find a policy that
maximizes the (weighted) sum of rewards
• While rewards are immediate, the goal is to maximize the long-term expected return
• Episodic tasks have a special terminal state and then are reset to a standard starting state

• Usually assumed to be completely independent
• Examples: Game playing or trips through a maze
• Expected return could just be a sum of rewards: 𝐺! = ∑"#$% 𝑅!&"&'

• Continual tasks do not have a clear terminal state
• A simple sum of rewards would not converge (i.e., infinite)
• Examples: Controlling an oil refinery or a robot learning to walk
• Expected return is usually a weighted sum of rewards where 𝛾 is the discount rate

𝐺! = &
"#$

(

𝛾"𝑅!&"&' , where 0 < 𝛾 < 1

• If we assume that for episodic tasks, ∀𝑡 > 𝑇, 𝑅! = 0, we can simply use the notation for
continual tasks but allow 𝛾! = 1 if it is episodic

David I. Inouye, Purdue University
8

Returns at the current timestep are equal to rewards
plus discounted returns at next timestep
• 𝐺+ = ∑,-!. 𝛾,𝑅+/,/"
• = 𝑅+/" + 𝛾𝑅+/# + 𝛾#𝑅+/$ + 𝛾$𝑅+/0 +⋯
• = 𝑅+/" + 𝛾 𝑅+/# + 𝛾𝑅+/$ + 𝛾#𝑅+/0 +⋯
• = 𝑅+/" + 𝛾𝐺+/"

• Thus, returns are recursively related to each other
• This simple relationship is fundamental to theoretic development later

David I. Inouye, Purdue University
9

The state-value function defines the expected
return of a state given a particular policy 𝜋
• Remember, rewards are easy. Estimating value is hard.
• Estimating value is the key to most RL algorithms.
• First, we define the value of states.
• The state-value function for policy 𝜋 is

𝑣1 𝑠 ≔ 𝔼1 𝐺+ 𝑆+ = 𝑠
= 𝔼1 ∑,-!. 𝛾,𝑅+/,/" 𝑆+ = 𝑠

• The expectation is based on the given policy 𝜋 (e.g., random/greedy policy)
• How “good” is this state, given that the agent follows 𝜋 for all actions

afterwards?
• Important: This state-value function will be different for different policies.

David I. Inouye, Purdue University
10

The Bellman equation for 𝑣! is a special recursive
equation whose solution is the value function
• 𝑣(𝑠 ≔ 𝔼(𝐺! 𝑆! = 𝑠
• = 𝔼(𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠 , see previous slide
• = ∑),+,,),)),+),,))… 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝜋 𝑎. 𝑠. 𝑝 𝑠.., 𝑟. 𝑠., 𝑎. … …

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 A
B

𝑟 +
𝛾 ∑)),+),,)),…𝜋 𝑎. 𝑠. 𝑝 𝑠.., 𝑟. 𝑠., 𝑎. 𝐺!"#

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝔼(𝐺!"# 𝑆!"# = 𝑠.

• = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣(𝑠′

• 𝑣(𝑠 = ∑),+,,) 𝜋 𝑎 𝑠 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣(𝑠′

David I. Inouye, Purdue University
11

Example: Solved Bellman equation (which is a system of linear
equations) to find the value function for a random policy

David I. Inouye, Purdue University
12

Example copied verbatim from page 60 of Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

The action-value function defines the expected return of taking
an action given a current state AND a particular policy 𝜋

• We now define the value of an action given a current state and policy 𝜋
• The action-value function for policy 𝜋 is defined as:

𝑞1 𝑠, 𝑎 ≔ 𝔼1 𝐺+ 𝑆+ = 𝑠, 𝐴+ = 𝑎
= 𝔼1 ∑,-!. 𝛾,𝑅+/,/" 𝑆+ = 𝑠, 𝐴+ = 𝑎

• The key difference is that now we condition on the next action 𝑎
• The expectation is based on the given policy 𝜋 (e.g., random/greedy policy)
• How “good” is the action, given that the agent first takes action 𝑎 and then

follows 𝜋 for all actions afterwards?
• Important: This action-value function will be different for different policies.

David I. Inouye, Purdue University
13

Optimal policies and optimal value functions
can be defined and exist theoretically
• How should we define an optimal policy?

• We want it to mean that this policy will produce the most expected return (i.e., long-term reward).
• One policy 𝜋 is better than another policy 𝜋. if it’s value function is better for all

possible states
𝜋 ≥ 𝜋. ⇔ 𝑣(𝑠 ≥ 𝑣() 𝑠 , ∀𝑠 ∈ 𝒮

• There exists at least one policy that is better or equal to all others called an optimal
policy

𝜋∗ ≥ 𝜋, ∀𝜋
• All optimal policies (possibly more than one) share the same optimal state-value

function
𝑣∗ 𝑠 ≔ max

(
𝑣(𝑠 , ∀𝑠 ∈ 𝒮

• Similarly, they share the same optimal action-value function
𝑞∗ 𝑠, 𝑎 = max

(
𝑞(𝑠, 𝑎 , ∀𝑠 ∈ 𝒮

David I. Inouye, Purdue University
14

The Bellman optimality equation for 𝑣∗ enables
solving for the optimal state-value function
• 𝑣∗ 𝑠 = max

)
𝑞(∗ 𝑠, 𝑎

• = max
)
𝔼(∗ 𝐺! 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
𝔼(∗ 𝑅!"# + 𝛾𝐺!"# 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
𝔼 𝑅!"# + 𝛾𝑣∗ 𝑆!"# 𝑆! = 𝑠, 𝐴! = 𝑎

• = max
)
∑,),+ 𝑝 𝑠., 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠.

• No optimal policy here! Just the model part since we are taking maximum over
actions.
• For finite MDPs, this can be solved via a system of non-linear equations

David I. Inouye, Purdue University
15

The Bellman optimality equation for 𝑞∗ enables
solving for the optimal action-value function

• 𝑞∗ 𝑠, 𝑎 = 𝔼 𝑅+/" + 𝛾max3 𝑞∗ 𝑠, 𝑎 𝑆+ = 𝑠, 𝐴+ = 𝑎

• = ∑4!,5 𝑝 𝑠6, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
3!

𝑞∗ 𝑠6, 𝑎6

• Again, no policy here, just the 𝑞 function!
• This can be solved as well.

David I. Inouye, Purdue University
16

The optimal value functions can be used to
construct an optimal policy!
• If we have 𝑣∗ 𝑠 , then we can simply choose the optimal action that will

maximize the value after taking one action
𝑎+∗ = arg max

3
;
4!,5

𝑝 𝑠6, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠6

• Called one-step search or greedy search with respect to state-value function 𝑣∗ 𝑠
(rather than greedy with respect to the expected immediate reward 𝔼 𝑅!|𝐴! = 𝑎)
• Greedy/local w.r.t. 𝑣∗ is globally optimal.

• If we have 𝑞∗ 𝑠, 𝑎 , then the optimal action is even simpler:
𝑎+∗ = arg max

3
𝑞∗ 𝑠, 𝑎

• The action-value function “caches” the one-step search values

David I. Inouye, Purdue University
17

Example: With the Gridworld optimal value
function, we can define the optimal policy

David I. Inouye, Purdue University
18

Example copied verbatim from page 65 of Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

MDPs solved!? No…
Solution relies on several difficult assumptions
1. The dynamics of the environment are known (i.e.,

𝑝 𝑆+ , 𝑅+ 𝑆+7", 𝐴+7" is known perfectly)
• Except in simple simulations like grid world, these dynamics are rarely known
• Even for simple games like chess, the opponent’s strategy is unknown so the

dynamics are unknown

2. Computational resources are sufficient for this calculation
• For example, even a simple backgammon game has 10%$ states

3. The states have the Markov property
• All relevant information of the past must represented in the environment state
• It is often difficult to ensure this property in real-world scenarios

David I. Inouye, Purdue University
19

RL is about approximating solutions to these
MDPs
• While optimal solutions are almost never possible, approximations can still be

quite useful
• Most RL algorithms focus on estimating the value functions in some way
• RL algorithms often substitute knowledge of the environment with actual

experience in place of knowledge (like in bandits)
• One saving grace in practice is that not all states are equally likely

• This is akin to the notion that real-world data (e.g., images) is much simpler than the
high-dimensional space it lives in

• Thus, generalization beyond the theoretic “worst case” is possible in practice
• While there are other algorithms for solving MDPs, the online nature of RL

distinguishes it from other approaches to MDPs
• It can collect more information on the “common” states and thus do well

David I. Inouye, Purdue University
20

Summary of MDPs
• Agent and environment mappings for problems

• The agent is defined as what is directly controllable (NOT mere knowledge)
• The environment is everything else

• MDPs model this interaction with states, actions and rewards
• The environment is defined by the transition distribution 𝑝 𝑆!, 𝑅! 𝑆!+', 𝐴!+'
• The agent is defined by a policy 𝜋 𝐴! 𝑆!
• Together, they define a joint distribution over sequences of states, actions and rewards

• The agent attempts to optimize the expected return, which is the discounted sum of future
rewards

• The state-value and action-value functions represent the long-term value of states or
actions

• An optimal policy can be constructed from optimal value functions
• In practice, RL algorithms usually approximate these value functions in an online manner

even if the environment is unknown

David I. Inouye, Purdue University
21

Reference

• Based on the excellent RL book by Sutton and Barto
• http://incompleteideas.net/book/the-book-2nd.html

David I. Inouye, Purdue University
22

http://incompleteideas.net/book/the-book-2nd.html

