
Multi-Armed Bandits
David I. Inouye

The multi-armed bandit problem
is inspired by a row of slot machines
• A gambler is the agent
• The row of slot machines is the environment
• The agent can take an action by pulling a slot

machine’s “arm”
• The slot machine payout (or lack thereof) is

the reward signal

David I. Inouye, Purdue University
2

https://medium.com/growth-book/guide-to-multi-arm-bandits-what-
is-it-and-why-you-probably-shouldnt-use-it-ecc9bb2e5a84

Interactive multi-armed bandit demo

David I. Inouye, Purdue University
3

Multi-armed bandits are a simplification of RL
yet they retain core RL-specific ideas
• The environment only has a single state

• “Observing” the environment state is not necessary since it’s always the same

• The environment does not change (in the vanilla bandit problem)
• The distribution of rewards does not change over time or due to actions
• For example, the payout probabilities for each slot machine are fixed

• At every timestep, the agent can choose any action

• The only problem is lack of knowledge
• If we knew which machine gave the highest average payout, we would just take that optimal action

again and again.
• If it was supervised learning, only one example of the “correct” action would be enough!
• The explore-exploit tradeoff still exists because of uncertainty

David I. Inouye, Purdue University
4

Multi-armed bandits are a simplification of RL
yet they retain core RL-specific ideas
• Bandits isolate the unique feature of RL regarding “feedback”
• Instructive feedback provides the correct action no matter which

action was already taken (e.g., supervised learning)
• The optimal action 𝑎!∗ (equivalently, ground truth label 𝑦∗) is the “feedback”

given to a supervised learning system regardless of the actual action 𝑎!
(equivalently, system’s prediction #𝑦)

• Evaluative feedback provides a reward depending on the action
actually taken
• The reward signal is a function of the action actually taken 𝑎!, i.e., 𝑅 𝑎! .
• Thus, the environment evaluates the actual action/decision made.

David I. Inouye, Purdue University
5

How do we design a policy that maximizes the
sum of rewards?
• We could just do a completely random policy that randomly chooses an

action at every time step
𝐴! ∼ Uniform({1,2, … , 𝐾	})

• This is good because it is simple and achieves an average reward over all
choices
• It chooses good and bad actions evenly
• It completely ignores the past (i.e., ignores its experience)

• However, it will often take an action that gives suboptimal reward

David I. Inouye, Purdue University
6

A better approach is to estimate the value of
each action to determine optimal actions
• First, we will define the value of an action as the expected reward given

this action:
𝑞∗ 𝑎 ≔ 𝔼 𝑅! 𝐴! = 𝑎

• 𝑅! represents the reward random variable at time 𝑡
• 𝐴! represents the action random variable at time 𝑡
• 𝑎 represents a specific action

• If we knew the 𝑞∗, then the problem would be trivial, just repeatedly take
𝐴! =	𝑎∗ = arg	max

#
𝑞∗ 𝑎

• Obviously, we do not know 𝑞∗ but we can approximate it given our
previous actions:

𝑄! 𝑎 ≈ 𝑞∗ 𝑎

David I. Inouye, Purdue University
7

A sample average can be used to estimate the
expectation
• We can estimate 𝑞∗ by using a sample average over the past actions and

rewards:
𝑄! 𝑎 ≔

sum	of	rewards	when	𝑎	taken	prior	to	𝑡
number	of	times	𝑎	taken	prior	to	𝑡	

=
∑#$%!&%𝑅# ⋅ 𝕀 𝐴# = 𝑎
∑#$%!&% 𝕀 𝐴# = 𝑎

• As an example, suppose the past rewards and actions are:

𝐴 = 1,2,2,1,2, 2,2
𝑅 = 0,1,1,1,0, 1,1

• If 𝑡 = 6, then 𝑄$ 1 = %
&
, 𝑄$ 2 = &

'
• What would it be for 𝑡 = 3?

David I. Inouye, Purdue University
8

Given an estimate of the action value 𝑄! 𝑎 ,
how could we use this information?
• The greedy action optimizes the action value approximation 𝑄! 𝑎𝐴! = arg	max

"
𝑄! 𝑎

• This is good because it approximates the optimal action
𝑎∗ = arg	max

"
𝑞∗ 𝑎

• Thus, it will tend to have better reward than the random policy
• Greedy algorithm

• Initialize ∀𝑎	, 𝑄! 𝑎 ← 0, 	 𝑛" ← 0
• For 𝑡 = {1,2, … , 𝑇}

• Choose 𝐴! ← arg	max
"

𝑄! 𝑎
• Receive reward 𝑅! ← Environment 𝐴!
• Update 𝑄!#$ 𝐴! ←

%! &! ⋅("! #)!
("!#$

• Update 𝑛&! ← 𝑛&! + 1

David I. Inouye, Purdue University
9

Greedy can be suboptimal
if 𝑄! is a a bad approximation
• However, greedy can be bad, if 𝑄! 𝑎 is bad approximation

max
"
𝑄! 𝑎 ≠ max

"
𝑞∗ 𝑎

• Thus, the core explore-exploit tradeoff remains:
• Exploit – Choose greedy action to maximize rewards.
• Explore – Choose non-greedy action to improve estimate of 𝑄#
• Note: The “explore” part is just about improving our understanding about the

environment rather than finding new environment states because there are is only one
state in bandits

• Can we do better than greedy?

David I. Inouye, Purdue University
10

𝜖-Greedy algorithm slightly modifies the
greedy algorithm to improve exploration
• One simple idea is to randomly sample arms initially and then do greedy from

then on
• A more common approach is to randomly choose between explore (via

random algorithm) and exploit (via greedy algorithm)
• 𝜖-Greedy algorithm

• Initialize ∀𝑎	, 𝑄! 𝑎 ← 0, 	 𝑛" ← 0
• For 𝑡 = {1,2, … , 𝑇}

• With probability 𝜖, choose 𝐴! ← RandomAction()
• Otherwise, choose 𝐴! ← arg	max

"
𝑄! 𝑎

• Receive reward 𝑅! ← Environment 𝐴!
• Update 𝑄!#$ 𝐴! ←

%! &! ⋅("! #)!
("!#$

• Update 𝑛&! ← 𝑛&! + 1

David I. Inouye, Purdue University
11

Demo of bandit algorithms

David I. Inouye, Purdue University
12

Non-stationary / dynamic bandits relax the
assumption that the environment is only in one state
• The distribution of rewards changes over time

• Though this doesn’t necessarily mean that the actions affect the environment

• The optimal 𝑞∗ is dependent on time

• In practice, the estimate 𝑄! can be updated using a gradient-like rule:
𝑄!@A 𝐴! ≔ 𝑄! 𝐴! + 𝛼 𝑅! − 𝑄! 𝐴!

• This turns out to be a decaying weighted average (i.e., more weight on the
most recent rewards:

𝑄!@A 𝐴! = 1 − 𝛼 𝑄A +4
BCA

!

𝛼 1 − 𝛼 !DB𝑅B

David I. Inouye, Purdue University
13

Contextual bandits relax the assumption that the agent
can observe some clue about the environment state
• Suppose now that the environment changes (nonstationary) AND that the

agent can observe some clue or contextual information about the
environment
• Examples

• Netflix images – The demographics or previous ratings of the user.
• Best search result – The search query and user history

• Now the best action depends on this context, or more generally some
observation of the environment state, denoted 𝑆!
• This is the “input” to the action-selection algorithm (like 𝑥$ for supervised learning)

• One remaining assumption is that the actions do NOT affect the next state
• Thus, there is still no notion of planning in contextual bandits
• This is the last remaining assumption to relax to get the full RL problem

David I. Inouye, Purdue University
14

Summary

• Multi-armed bandits are a simplification of RL
• Single environment state
• Lack of knowledge / uncertainty is the key challenge

• Bandit problems retain key unique aspects of RL including
• Evaluative feedback rather than instructive feedback (as in supervised learning)
• Explore-exploit tradeoff even though the environment does not change

• Bandit algorithms
• Random
• Greedy
• 𝜖-Greedy

• Variants of bandit problems
• Nonstationary bandits – Environment changes over time
• Contextual bandits – Agent observes clues/context about the environment state
• Both assume that actions do NOT affect future environment states

David I. Inouye, Purdue University
15

Reference

• Based on the excellent RL book by Sutton and Barto
• http://incompleteideas.net/book/the-book-2nd.html

David I. Inouye, Purdue University
16

http://incompleteideas.net/book/the-book-2nd.html

