Multi-Armed Bandits

David I. Inouye
The **multi-armed bandit** problem is inspired by a row of slot machines

- A gambler is the **agent**
- The row of slot machines is the **environment**
- The agent can take an **action** by pulling a slot machine’s “arm”
- The slot machine payout (or lack thereof) is the **reward** signal
Interactive multi-armed bandit demo
Multi-armed bandits are a simplification of RL yet they retain core RL-specific ideas

- The environment only has a **single state**
 - “Observing” the environment state is not necessary since it’s always the same

- The environment **does not change** (in the vanilla bandit problem)
 - The **distribution of rewards** does not change over time or due to actions
 - For example, the payout probabilities for each slot machine are fixed

- At every timestep, the agent can choose **any action**

- The only problem is **lack of knowledge**
 - If we knew which machine gave the highest average payout, we would just take that optimal action again and again.
 - If it was supervised learning, only one example of the “correct” action would be enough!
 - The **explore-exploit tradeoff** still exists because of **uncertainty**
Multi-armed bandits are a simplification of RL yet they retain core RL-specific ideas

- Bandits isolate the unique feature of RL regarding “feedback”
- **Instructive feedback** provides the correct action no matter which action was already taken (e.g., supervised learning)
 - The optimal action \(a_t^* \) (equivalently, ground truth label \(y^* \)) is the “feedback” given to a supervised learning system regardless of the actual action \(a_t \) (equivalently, system’s prediction \(\hat{y} \))

- **Evaluative feedback** provides a reward depending on the action actually taken
 - The reward signal is a function of the action actually taken \(a_t \), i.e., \(R(a_t) \).
 - Thus, the environment evaluates the actual action/decision made.
How do we design a policy that maximizes the sum of rewards?

• We could just do a completely random policy that randomly chooses an action at every time step
 \[A_t \sim \text{Uniform} \left(\{1, 2, \ldots, K \} \right) \]

• This is good because it is simple and achieves an average reward over all choices
 • It chooses good and bad actions evenly
 • It completely ignores the past (i.e., ignores its experience)

• However, it will often take an action that gives suboptimal reward
A better approach is to estimate the value of each action to determine optimal actions

• First, we will define the **value** of an action as the expected reward given this action:

\[q^*(a) := \mathbb{E}[R_t | A_t = a] \]

• \(R_t \) represents the reward random variable at time \(t \)
• \(A_t \) represents the action random variable at time \(t \)
• \(a \) represents a specific action

• If we knew the \(q^* \), then the problem would be trivial, just repeatedly take

\[A_t = a^* = \arg\max_a q^*(a) \]

• Obviously, we do not know \(q^* \) but we can **approximate** it given our previous actions:

\[Q_t(a) \approx q^*(a) \]
A sample average can be used to estimate the expectation

- We can estimate q_* by using a sample average over the past actions and rewards:
 \[Q_t(a) := \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{I}(A_i = a)}{\sum_{i=1}^{t-1} \mathbb{I}(A_i = a)} \]

- As an example, suppose the past rewards and actions are:
 \[A = [1,2,2,1,2,2,2] \]
 \[R = [0,1,1,1,0,1,1] \]

- If $t = 6$, then $Q_6(1) = \frac{1}{2}$, $Q_6(2) = \frac{2}{3}$

- What would it be for $t = 3$?
Given an estimate of the action value $Q_t(a)$, how could we use this information?

- The **greedy action** optimizes the action value approximation $Q_t(a)$
 \[A_t = \arg \max_a Q_t(a) \]
- This is good because it approximates the optimal action
 \[a^* = \arg \max_a q_*(a) \]
 - Thus, it will tend to have better reward than the random policy

Greedy algorithm
- Initialize $\forall a, Q_1(a) \leftarrow 0, n_a \leftarrow 0$
- For $t = \{1, 2, ..., T\}$
 - Choose $A_t \leftarrow \arg \max Q_t(a)$
 - Receive reward $R_t \leftarrow \text{Environment}(A_t)$
 - Update $Q_{t+1}(A_t) \leftarrow \frac{(Q_t(A_t)n_{A_t}) + R_t}{n_{A_t} + 1}$
 - Update $n_{A_t} \leftarrow n_{A_t} + 1$
Greedy can be suboptimal if Q_t is a bad approximation

• However, greedy can be bad, if $Q_t(a)$ is bad approximation
 \[\max_a Q_t(a) \neq \max_a q^*(a) \]

• Thus, the core explore-exploit tradeoff remains:
 • **Exploit** – Choose greedy action to maximize rewards.
 • **Explore** – Choose non-greedy action to improve estimate of Q_t
 • Note: The “explore” part is just about improving our understanding about the environment rather than finding new environment states because there are is only one state in bandits

• Can we do better than greedy?
ε-Greedy algorithm slightly modifies the greedy algorithm to improve exploration

• One simple idea is to randomly sample arms initially and then do greedy from then on
• A more common approach is to randomly choose between explore (via random algorithm) and exploit (via greedy algorithm)

ε-Greedy algorithm
• Initialize ∀a, Q₁(a) ← 0, nₐ ← 0
• For t = {1,2, ..., T}
 • With probability ε, choose Aₜ ← RandomAction()
 • Otherwise, choose Aₜ ← arg max_a Qₜ(a)
 • Receive reward Rₜ ← Environment(Aₜ)
 • Update Qₜ₊₁(Aₜ) ← \frac{(Qₜ(Aₜ) \cdot nₐ) + Rₜ}{nₐ + 1}
 • Update nₐ ← nₐ + 1
Demo of bandit algorithms
Non-stationary / dynamic bandits relax the assumption that the environment is only in one state

- The distribution of rewards changes over time
 - Though this doesn’t necessarily mean that the actions affect the environment

- The optimal q_* is dependent on time

- In practice, the estimate Q_t can be updated using a gradient-like rule:
 $$Q_{t+1}(A_t) := Q_t(A_t) + \alpha [R_t - Q_t(A_t)]$$
 - This turns out to be a decaying weighted average (i.e., more weight on the most recent rewards):
 $$Q_{t+1}(A_t) = (1 - \alpha)Q_1 + \sum_{i=1}^{t} \alpha(1 - \alpha)^{t-i} R_i$$
Contextual bandits relax the assumption that the agent can observe some clue about the environment state

• Suppose now that the environment changes (nonstationary) **AND** that the agent can observe some clue or **contextual information** about the environment

• Examples
 • Netflix images – The demographics or previous ratings of the user.
 • Best search result – The search query and user history

• Now the best action depends on this **context**, or more generally some observation of the **environment state**, denoted S_t
 • This is the “input” to the action-selection algorithm (like x_i for supervised learning)

• One remaining assumption is that the actions do **NOT** affect the **next state**
 • Thus, there is still **no notion of planning** in contextual bandits
 • This is the last remaining assumption to relax to get the full RL problem
Summary

• Multi-armed bandits are a simplification of RL
 • Single environment state
 • Lack of knowledge / uncertainty is the key challenge

• Bandit problems retain key unique aspects of RL including
 • Evaluative feedback rather than instructive feedback (as in supervised learning)
 • Explore-exploit tradeoff even though the environment does not change

• Bandit algorithms
 • Random
 • Greedy
 • ϵ-Greedy

• Variants of bandit problems
 • Nonstationary bandits – Environment changes over time
 • Contextual bandits – Agent observes clues/context about the environment state
 • Both assume that actions do NOT affect future environment states
Reference

• Based on the excellent RL book by Sutton and Barto