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Very high-dimensional data 
is becoming ubiquitous

▸Images (1 million pixels)

▸Text (100k unique 
words)

▸Genetics (4 million SNPs)

▸Business data (12 million 
products)
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Why dimensionality reduction?
Visualization

▸Allows 2D scatterplot visualizations even of 
high-dimensional data (2D projection of digits)
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https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html


Why dimensionality reduction?
Lower computation costs

▸Suppose original dimension 
is large like d = 100000
(e.g., images, DNA 
sequencing, or text)

▸If we reduce to 𝑘 = 100 
dimensions, the training 
algorithm can be sped up by 
1000×
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4-5 million SNPs in human genome.
https://www.diagnosticsolutionslab.com/tests/genomicinsight

https://www.diagnosticsolutionslab.com/tests/genomicinsight


Why dimensionality reduction?
Underlying phenomena is on lower dimensional space
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Outline of Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction
3. Derive PCA formulation for 1D
▸Least error 1D projection is orthogonal
▸Sum over all data points

4. Solution is based on truncated SVD
5. Equivalent problem: Max variance
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Math: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

▸PCA can be formalized as
min

!∈ℝ!×#,%∈ℝ$×#
𝑋& − 𝑍𝑊'

(
) 	 s. t. 	𝑊'𝑊 = 𝐼*

▸where
X! = X − 𝟏"𝜇#$ ∈ ℝ"×& 	 centered	input	data
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Review of linear algebra 
and introduction to numpy Python library

▸See Jupyter notebook, which can be opened 
and run in Google Colab

David I. Inouye 9



Math: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

▸PCA can be formalized as
min

!∈ℝ!×#,%∈ℝ$×#
𝑋& − 𝑍𝑊'

(
) 	 s. t. 	𝑊'𝑊 = 𝐼*

▸where
X! = X − 𝟏"𝜇#$ ∈ ℝ"×& 	 centered	input	data

David I. Inouye 10



Math: Principal Component Analysis (PCA) can be 
formalized as minimizing the linear reconstruction 
error of the data using only 𝑘 ≤ 𝑑 dimensions

min
!∈ℝ!×#,%∈ℝ$×#

𝑋& − 𝑍𝑊'
(
) 	 s. t. 	𝑊'𝑊 = 𝐼*

▸Let’s	stare	at	this	equation	some	more	J	
▸Why is this dimensionality reduction?
▸What does the orthogonal constraint mean?
▸Why minimize the squared Frobenius norm?
▸ 𝑋% − 𝑍𝑊&

'
( = ∑)*+, 𝒙)& − 𝒛)&𝑊&

(
( = ∑)*+, 𝒙𝒊 −𝑊𝒛) (

(

▸For analysis, let’s simplify to a single dimension 
(i.e., 𝑘 = 1)
▸∑)*+, 𝒙𝒊 − 𝑧)𝒘 (

( where 𝑧) is a scalar
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What is the best projection given a fixed 
subspace (line in 1D case)?

▸If we are given 𝒘, what is the best 𝑧 (i.e. minimum 
reconstruction error) for a given 𝒙?
▸min

%
𝒙 − 𝑧𝒘 &

&

▸The orthogonal projection! 
▸𝑧 = 𝒙'𝒘 = 𝒙 𝒘 cos 𝜃 = 𝒙 cos 𝜃 
▸𝑧 = 𝒙 cos 𝜃 = hyp ⋅ ()*+,- = adj
▸𝑧𝒘 is a scaled vector along the line defined by 𝒘
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?
𝑥

𝑦 = 𝑧𝒘
𝑤



Thus, we can simplify to only minimizing over 𝑊

min
𝒛,𝒘: 𝒘 !+,

'
-+,

"

𝒙𝒊 − 𝑧-𝒘 /
/ = min

𝒘: 𝒘 !+,
'
-+,

"

𝒙𝒊 − 𝒙-$𝒘 𝒘 /
/

▸Now we can return to the Frobenius norm:
min

𝒘: 𝒘 !+,
𝑋0 − 𝒛𝒘𝑻

2
/ 	 where	 𝒛 = 𝑋0𝒘

▸What is 𝒛𝒘𝑻? Have we seen something like this before?
▸This is the best rank-1 approximation to 𝑋0, which is given 

by the SVD! 
▸𝒘 = 𝒗. and 𝒛 = 𝜎.𝒖., where 𝜎., 𝒖., 𝒗. are the first singular 

value, left singular vector and right singular vector respectively.
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For 𝑘 ≥ 1, the PCA solution is the top 𝑘 right 
singular vectors

▸If 𝑋& = 𝑈𝑆𝑉', then the general solution is
𝑊∗ = 𝑉,:*

▸Remember: SVD is best 𝑘 dim. approximation
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Check: The solution reveals the truncated SVD 
as best approximation

min
.

𝑋& − 𝑋&𝑊 𝑊'
(
) 	 s. t. 	 𝑊'𝑊 = 𝐼
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𝑋! 𝑋!

𝑊
𝑊"

-

𝑑

𝑛 𝑛

𝑑

𝑑

𝑘
𝑘

𝑑

𝑋! 𝑈

𝑉!:#
𝑉#:%"

- 𝑆

𝑉"

𝑋! = 𝑈𝑆𝑉" 𝑊 = 𝑉#:%



Check: The solution reveals the truncated SVD 
as best approximation

min
.

𝑋& − 𝑋&𝑊 𝑊'
(
) 	 s. t. 	 𝑊'𝑊 = 𝐼
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𝑋! 𝑋!

𝑊
𝑊"

-

𝑑

𝑛 𝑛

𝑑

𝑑

𝑘
𝑘

𝑑

𝑋! 𝑈

𝑉#:%"

- 𝑆!:# Top 𝑘 truncated SVD

𝑍 𝑊"



Intuition: Principal component analysis finds the best 
linear projection onto a lower-dimensional space
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

2D to 1D projection: Red lines show the projection error onto 1D lines.  PCA finds the line 
that has the smallest projection error (in this example, when it aligns with the purple).

min
𝒘: 𝒘 !'#

𝑋! − 𝒛𝒘𝑻
)
* 	

where	 𝒛 = 𝑋!𝒘

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


Minimizing reconstruction error (red lines) is 
equivalent to maximizing the variance of projection 
(spread of red points)
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Max reconstruction error
Min variance

Min reconstruction error
Max variance

argmin
𝒘: 𝒘 !'#

𝑋! − 𝒛𝒘𝑻
)
* 	

= argmax
𝒘: 𝒘 !'#

𝜎+*where	 𝒛 = 𝑋!𝒘

argmax
𝒘: 𝒘 !'#

𝑋! − 𝒛𝒘𝑻
)
* 	

= argmin
𝒘: 𝒘 !'#

𝑧 *
* 	= argmin

𝒘: 𝒘 !'#
𝜎+*



Derivation of equivalence will require 3 facts

1. Squared Frobenius norm is trace of matrix product 
(generalizes 𝑥 /

/ = 𝑥$𝑥):
▸ 𝐴 I

& = Tr 𝐴'𝐴

2. If 𝐴 ∈ ℝ"×& is a centered data matrix, then the 
Frobenius norm is the scaled sum of 1D variances:
▸ 𝐴 I

& = Tr 𝐴'𝐴 = 𝑛Tr =Σ = 𝑛∑J 𝜎J&
▸where =Σ is the empirical covariance matrix and 𝜎J& is variance 

for the 𝑗-th dimension

3. Optimization solutions are invariant when the objective 
is multiplied by positive constant or a constant is added, 
▸argmin

K
𝑓 𝑊 = argmin

K
𝑎𝑓 𝑊 + 𝑏 , 	 ∀𝑎 > 0, 𝑏 ∈ ℝ
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The PCA objective can be decomposed into the 
original variance minus the variance of projection

▸Minimize reconstruction error
min

!:!$!#$%
𝑋% − 𝑋%𝑊 𝑊&

'
(

▸ 𝑋% − 𝑋%𝑊𝑊&
'
(

▸= Tr 𝑋% − 𝑋%𝑊𝑊& & 𝑋% − 𝑋%𝑊𝑊&

▸= Tr 𝑋%& −𝑊𝑊&𝑋%& 𝑋% − 𝑋%𝑊𝑊&

▸= Tr 𝑋%&𝑋% −𝑊𝑊&𝑋%&𝑋% − 𝑋%&𝑋%𝑊𝑊& +𝑊𝑊&𝑋%&𝑋%𝑊𝑊&

▸= Tr 𝑋%&𝑋% − Tr 𝑊𝑊&𝑋%&𝑋% − Tr 𝑋%&𝑋%𝑊𝑊& + Tr 𝑊𝑊&𝑋%&𝑋%𝑊𝑊&

▸= Tr 𝑋%&𝑋% − Tr 𝑊&𝑋%&𝑋%𝑊 − Tr 𝑊&𝑋%&𝑋%𝑊 + Tr 𝑊&𝑋%&𝑋%𝑊𝑊&𝑊
▸= Tr 𝑋%&𝑋% − Tr 𝑊&𝑋%&𝑋%𝑊 − Tr 𝑊&𝑋%&𝑋%𝑊 + Tr 𝑊&𝑋%&𝑋%𝑊
▸= Tr 𝑋%&𝑋% − Tr 𝑋%𝑊 &𝑋%𝑊
▸= Tr 𝑋%&𝑋% − Tr 𝑍&𝑍
▸= 𝑛∑)#*+ 𝜎,,)( − 𝑛∑)#*. 𝜎/,)(
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Equivalence is derived by manipulating 
optimization problem

▸ argmin
.:.../0#

𝑋& − 𝑋&𝑊 𝑊'
(
)

▸= argmin
.:.../0#

𝑛∑1/,2 𝜎3,1) − 𝑛∑1/,* 𝜎4,1)

▸= argmin
.:.../0#

−∑1/,* 𝜎4,1)

▸= argmax
.:.../0#

∑1/,* 𝜎4,1)

▸This last one is exactly maximizing the variance 
along the projected dimensions of 𝒛
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Equivalent solutions: The solution to both problems 
is the top 𝑘 right singular vectors of 𝑋&

▸Minimize reconstruction error
min

A:A$A+B%
𝑋0 − 𝑋0𝑊 𝑊$

2
/

▸Singular value decomposition (SVD) of 𝑋L = 𝑈𝑆𝑉'
▸Solution: 𝑊∗ = 𝑉.:O

▸Maximize variance of latent projection (equivalent solution)

max
K:K!KPQ"

R
JP.

O

𝜎%,J&

▸Equivalent solution is the eigenvectors of 𝑋L'𝑋L = 𝑛=Σ
▸𝑋&'𝑋& 	= 𝑈𝑆𝑉' ' 𝑈𝑆𝑉' = 𝑉𝑆𝑈' 𝑈𝑆𝑉' = 𝑉𝑆 𝑈'𝑈 𝑆𝑉' = 𝑉𝑆(𝑉' = 𝑄Λ𝑄'

▸Solution: 𝑊∗ = 𝑄.:O ≡ 𝑉.:O!
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Recap: Principal Components Analysis (PCA)

1. Motivation for dimensionality reduction
2. Formal PCA problem: Min reconstruction
3. Derive PCA formulation for 1D
▸Least error 1D projection is orthogonal
▸Sum over all data points

4. Solution is based on truncated SVD
5. Alternative viewpoint: Max variance
▸Derive equivalence 
▸Derive equivalent solutions
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Demo of PCA via sklearn (time permitting)

▸Random projections vs PCA projections
▸Visualizations of 
▸Minimum reconstruction error
▸Maximum variance
▸Explained variance based on 𝑘

▸Code examples
▸Digits
▸Eigenfaces
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Questions?
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