Recurrent Neural Networks
(RNN)

David I. Inouye

? PURDUE Elmore Family School of Electrical

UNIVERSITY and Computer Engineering

Sequential data
1s natural 1n

many
applications

Text analysis

Speech recognition

Medical time series

Stock prices

Windowing is a simple approach to handle
sequential data with standard NN

* Break up sequence into multiple fixed-length sequences:

dim(x)/W

split(x, y) = {(w;, %;)},_,

* “This is a great movie.” =2 {(“This is”, +1), (“is a”, +1), (“a great”, +1), (“great movie”, +1)}
° CCHello W()rld!” 9 {(CC###”) CCH)))’ <CC##H)7’ cce”), <CC#HC’7, 66197>’ (CCHCI”) 66179)’ (Ccell))’ CCO,’)’ .. '}

* Apply model f to each window
v (wy,y) € splitGey), 55 = F(w)

* Traiming: Compute loss on each term or an aggregate term

Z{’(?j’yj) or f(ZJA’j'Y>

* Test-time: Concatenate or average predictions for all windows.

While a good baseline for sequences,
the windowing approach has several 1ssues

* Fixed-window size
* How do you choose the fixed-window size?

* If too big, computational cost is high and learning could be slow.
* If too small, the window may lack sufficient history to predict.

* Lacks long-range dependencies (limited to window)
* Cannot model dependencies beyond the window size

* Predictions on each window are assumed to be independent

* Window overlap can help as the inputs are implicitly dependent
* Yet the outputs are not explicitly dependent

Recurrent neural networks (RNNs) process data sequentially
and can handle variable-sized input/output sequences

one to one one to many many to one many to many many to many

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification
where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

Quoted from excellent article on RNNs with examples: 5
https://karpathy.github.io /2015/05/21/rnn-effectiveness/ David L. Inouye, Purdue University

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs take an input + old hidden state
and produce output + new hidden state

* Let x, y, and h denote the input, output, and hidden state sequences
* Each element in sequence could be any format including a vector, a discrete
integer, or even a full tensor itself (e.g., video processing
* Let L corresponds to length of the sequence
* For example, x = (xq1, X3, ***, Xp, ***, XL)
* Note this can be different for each sample
* For one-to-many or many-to-one, the sequences can be padded to be the same

length

* RNN (parametrized by 8) written as recursion, where Z; is initialized to

some default value:
Ve, he = fo(xp, ho—1)

RNNs can be visualized with loop arrows
or unrolled with model copies

R
266 o

Compact recursive Unrolled visualization shows that the same network is used multiple
visualization shows times but with different inputs and different hidden states.

the RNNs simple

form.

-
David I. Inouye, Purdue University

A vanilla RNN can be made with linear
and activation layers

* The RNN module can be written as fy(hp_1,xp) = (hy, V)
* hg = tanh(Whhg_l + Wxxf + bh)
* Y, = Wyh{’ + by = Wytanh(Whhg_l + WxX,g) + by

* The parameters of the model are the weights and biases

0 = (Wy, Wy, W,, by, by)

&) ®
1 r 1
N R
A J A
| |
© ® ©
Images and content adapted from excellent blogpost on LSTMS: In these figures [] O — >'> —<

https://colah.github.io /posts/2015-08-Understanding-I.STMs t=+¢ Neural Network Pointwise Vector
Layer i

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training RNNs can simply use backpropagation
where the whole chain 1s “backpropagated”

* Backpropagate gradients of
the loss function through the
computation graph

* PyTorch’s dynamic
computation graph enables
backprop for any length

sequence

e Fach RNN model evaluation

fo is logically the same model
so the gradients accumulate

David I. Inouye, Purdue Universit

Demo ot simple RNNs

for sequence classificatior

* Task is many to one.

* Architecture is simple.

many to one

Right image from PyTorch tutorial https://pytorch.org/tutorials/intermediate/char_rnn_classification tutorial.html; See previous

slides for credit of image on left. David I. Inouye, Purdue University

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Demo ot simple RNNs

for sequence generation

* Task is conceptually one to many but can be = mwwm
implemented as many to many. S
* Architecture is a little more complex. e e
one to many many to many ot = s
T
T ? T T ! T dr0|')out
T i o e

Right image from PyTorch https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html
Accessed on 3-28-2023; See previous slides for credit of image on left.

11

David I. Inouye, Purdue University

https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html

However, vanilla RNNs sutfer from vanishing and exploding
gradients that result in only learning short-term dependencies

* Vanishing or exploding gradient are caused by recursive definition of hidden state
* For simplicity, let’s assume that w,, = 0 so that we see the core issue.

* The last prediction is as follows:
VL = wyhp + wyxy, = W}éhL = wy,(wphy_q T WX —1)
= wywph;_1 = wywphy_5 = =wy,wyhg
* The gradient of MSE loss for the last term is:

A\

d d dy;
_f ’ A _ e 2 — 2 e
dWy (y }’L) dWy ||y 3’L||2 (y)’L) dWy

* If wy > 1.0, then the gradient exponentially increases w.r.t. sequence length L.

= 2(y —)wrhyg

* If wy < 1.0, then the gradient exponentially decreases w.r.t. sequence length L.
* See demo on simple RNN.

Long Short-Term Memory (LSTM) units alleviate vanishing
gradient problem and enable learning of long-term dependencies

° h;:—l — [ht_l,xt] (concatenate) @
* vat — tanh(Wch£_1 + bc)

(new cell state information)
* fr = o(Wrhi_y + by) (forget gato
* iy = o(Wihi_1 + b;) (input gate)
*C=fi OCy +ir OC

(update cell state)
*0r = O'(M/Ohé_l + bo) (output gate)
° ht = O¢ @ tanh(Ct)

Images and content adapted from excellent blogpost on LSTMS: In this slide 1] O > >-> —<
ncatenat

https://colah.github.io/posts/2015-08-Understanding-L.STMs t=+¢ Neural Network Pointwise Vector c c
) Layer Operation Transfer ° nate opy

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units (GRU) simplity the LSTM

structure and seem to have better performance

° ht 1 = [ht 1,.X't] (concatenate) hy

* 2y = O(Wphiq) Gorget/inpucgare)

1 = O-(M/rht’f—l) (hidden gate)
o ht — tanh(W[Tt @ ht—let])

(new hidden information)

*he=1-2z)Ohi_1+2 Oh

(update hidden)
Images and content adapted from excellent blogpost on LSTMS: ~ In this slide 1] 0O — > <
https://colah. gth b.io/posts/2015- 08 Understandino-1.STMs t = ‘E twork Pointwise Vector '14

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs can be stacked into deep RNNs and
even bidirectional RNNs

Bidirectional RNN
David I. Inouye, Purdue University

Standard RNNs struggle for sequence-to-sequence
tasks because of limited hidden state capacity

many to many

* Example: Translation between French and English

* Could we use a one-to-one input/output RNN?
* Problem: Input sequence could have different length.
* Problem: The order of words is not the same in French and English.

e More common to use autoencoder structure with 2 RNNs.
* Problem: Challenging to encode entire sentence in hidden state.
hy

i PP D2
LY, LNy LN, LS, U o B L, LA R

David I. Inouye, Purdue University

Attention is a2 model architecture that enables the
decoder to efficiently use all encoder outputs

* Attention overcomes some of the challenges of RNN-based translation

* Attention allows long-range dependencies and avoids a completely
sequential view of the input and output

e Details will be 1n next lecture on attention and transformers.

fo iz. i?’» %.1 —hL>
" =

17
David I. Inouye, Purdue University

concat(hq, hy, -+, hy)

