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Sequential data 
is natural in 
many 
applications
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Text analysis

Speech recognition

Medical time series

Stock prices



Windowing is a simple approach to handle 
sequential data with standard NNs
• Break up sequence into multiple fixed-length sequences:

split 𝑥, 𝑦 = 𝑤!, 𝑦! !"#
$%& ' /)

• “This is a great movie.” à {(“This is”, +1), (“is a”, +1), (“a great”, +1), (“great movie”, +1)}
• “Hello world!” à {(“###”, “H”), (“##H”, “e”), (“#He”, “l”), (“Hel”, “l”), (“ell”, “o”), …}

• Apply model 𝑓 to each window
∀	(𝑤!, 𝑦!) ∈ split 𝑥, 𝑦	 , 0𝑦! = 𝑓 𝑤!

• Training: Compute loss on each term or an aggregate term

!
!

ℓ #𝑦! , 𝑦! 	 𝑜𝑟	 ℓ !
!

#𝑦! , 𝑦

• Test-time: Concatenate or average predictions for all windows. 

David I. Inouye, Purdue University
3



While a good baseline for sequences,
the windowing approach has several issues
• Fixed-window size

• How do you choose the fixed-window size?
• If  too big, computational cost is high and learning could be slow.
• If  too small, the window may lack sufficient history to predict.

• Lacks long-range dependencies (limited to window)
• Cannot model dependencies beyond the window size

• Predictions on each window are assumed to be independent
• Window overlap can help as the inputs are implicitly dependent
• Yet the outputs are not explicitly dependent
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Recurrent neural networks (RNNs) process data sequentially 
and can handle variable-sized input/output sequences
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RNNs take an input + old hidden state 
and produce output + new hidden state
• Let 𝑥, 𝑦, and ℎ denote the input, output, and hidden state sequences
• Each element in sequence could be any format including a vector, a discrete 

integer, or even a full tensor itself  (e.g., video processing
• Let 𝐿 corresponds to length of  the sequence
• For example, 𝑥 = 𝑥", 𝑥#, ⋯ , 𝑥ℓ, ⋯ , 𝑥%
• Note this can be different for each sample
• For one-to-many or many-to-one, the sequences can be padded to be the same 

length
• RNN (parametrized by 𝜃) written as recursion, where 𝑧+ is initialized to 

some default value:
𝑦ℓ, ℎℓ = 𝑓- 𝑥ℓ, ℎℓ./
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RNNs can be visualized with loop arrows
or unrolled with model copies

David I. Inouye, Purdue University
7

𝑥ℓ

𝑓"

𝑦ℓ

ℎℓ

Compact recursive 
visualization shows 
the RNNs simple 
form.
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Unrolled visualization shows that the same network is used multiple 
times but with different inputs and different hidden states.



A vanilla RNN can be made with linear 
and activation layers
• The RNN module can be written as 𝑓- ℎℓ./, 𝑥ℓ = ℎℓ, 𝑦ℓ
• ℎℓ = tanh 𝑊*ℎℓ+" +𝑊,𝑥ℓ + 𝑏*
• 𝑦ℓ = 𝑊-ℎℓ + 𝑏- = 𝑊-tanh 𝑊*ℎℓ+" +𝑊,𝑥ℓ + 𝑏-
• The parameters of  the model are the weights and biases

𝜃 = 𝑊*,𝑊,,𝑊-, 𝑏*, 𝑏-
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In these figures
𝑡 ≡ ℓ

Images and content adapted from excellent blogpost on LSTMS: 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Training RNNs can simply use backpropagation 
where the whole chain is “backpropagated” 
• Backpropagate gradients of  

the loss function through the 
computation graph
• PyTorch’s dynamic 

computation graph enables 
backprop for any length 
sequence
• Each RNN model evaluation 
𝑓- is logically the same model 
so the gradients accumulate
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• Task is many to one.
• Architecture is simple.

Demo of  simple RNNs 
for sequence classification
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slides for credit of  image on left.
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• Task is conceptually one to many but can be 
implemented as many to many.
• Architecture is a little more complex.

Demo of  simple RNNs 
for sequence generation
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Accessed on 3-28-2023; See previous slides for credit of  image on left.
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However, vanilla RNNs suffer from vanishing and exploding 
gradients that result in only learning short-term dependencies

• Vanishing or exploding gradient are caused by recursive definition of  hidden state
• For simplicity, let’s assume that 𝑤, = 0 so that we see the core issue.
• The last prediction is as follows:

0𝑦% = 𝑤-ℎ% +𝑤,𝑥% = 𝑤-ℎ% = 𝑤- 𝑤*ℎ%+" +𝑤,𝑥%+"
	 = 𝑤-𝑤*ℎ%+" = 𝑤-𝑤*#ℎ%+# = ⋯ = 𝑤-𝑤*%ℎ/

• The gradient of  MSE loss for the last term is:
𝑑
𝑑𝑤-

ℓ 𝑦, 0𝑦% =
𝑑
𝑑𝑤-

𝑦 − 0𝑦% #
# = 2 𝑦 − 0𝑦%

𝑑 0𝑦%
𝑑𝑤-

= 2 𝑦 − 0𝑦% 𝑤*%ℎ/
• If  𝑤* > 1.0, then the gradient exponentially increases w.r.t. sequence length 𝐿.
• If  𝑤* < 1.0, then the gradient exponentially decreases w.r.t. sequence length 𝐿.
• See demo on simple RNN.
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Long Short-Term Memory (LSTM) units alleviate vanishing 
gradient problem and enable learning of  long-term dependencies

• ℎ0./1 = ℎ0./, 𝑥0 	(concatenate)

• +𝐶0 = tanh 𝑊2ℎ0./1 + 𝑏2 	
(new cell state information)

• 𝑓0 = 𝜎 𝑊3ℎ0./1 + 𝑏3  (forget gate)

• 𝑖0 = 𝜎 𝑊4ℎ0./1 + 𝑏4  (input gate)

• 𝐶0 = 𝑓0 ⊙𝐶0./ + 𝑖0 ⊙ +𝐶0 
(update cell state)

• 𝑜0 = 𝜎 𝑊5ℎ0./1 + 𝑏5  (output gate)

• ℎ0 = 𝑜0 ⊙ tanh 𝐶0
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Gated Recurrent Units (GRU) simplify the LSTM 
structure and seem to have better performance
• ℎ0./1 = ℎ0./, 𝑥0 	(concatenate)

• 𝑧0 = 𝜎 𝑊6ℎ0./1 	(forget/input gate)

• 𝑟0 = 𝜎 𝑊7ℎ0./1 	(hidden gate)

• 9ℎ0 = tanh 𝑊 𝑟0 ⊙ℎ0./, 𝑥0 	
(new hidden information)

• ℎ0 = 1 − 𝑧0 ⊙ℎ0./ + 𝑧0 ⊙ 9ℎ0 	
(update hidden)
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RNNs can be stacked into deep RNNs and 
even bidirectional RNNs

David I. Inouye, Purdue University
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Standard RNNs struggle for sequence-to-sequence 
tasks because of  limited hidden state capacity

• Example: Translation between French and English
• Could we use a one-to-one input/output RNN?
• Problem: Input sequence could have different length.
• Problem: The order of  words is not the same in French and English.

• More common to use autoencoder structure with 2 RNNs.
• Problem: Challenging to encode entire sentence in hidden state.
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Attention is a model architecture that enables the 
decoder to efficiently use all encoder outputs
• Attention overcomes some of  the challenges of  RNN-based translation
• Attention allows long-range dependencies and avoids a completely 

sequential view of  the input and output
• Details will be in next lecture on attention and transformers.
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