
Recurrent Neural Networks
(RNN)
David I. Inouye

Sequential data
is natural in
many
applications

David I. Inouye, Purdue University 2

Text analysis

Speech recognition

Medical time series

Stock prices

Windowing is a simple approach to handle
sequential data with standard NNs
• Break up sequence into multiple fixed-length sequences:

split 𝑥, 𝑦 = 𝑤!, 𝑦! !"#
$%& ' /)

• “This is a great movie.” à {(“This is”, +1), (“is a”, +1), (“a great”, +1), (“great movie”, +1)}
• “Hello world!” à {(“###”, “H”), (“##H”, “e”), (“#He”, “l”), (“Hel”, “l”), (“ell”, “o”), …}

• Apply model 𝑓 to each window
∀	(𝑤!, 𝑦!) ∈ split 𝑥, 𝑦	 , 0𝑦! = 𝑓 𝑤!

• Training: Compute loss on each term or an aggregate term

!
!

ℓ #𝑦! , 𝑦! 	 𝑜𝑟	 ℓ !
!

#𝑦! , 𝑦

• Test-time: Concatenate or average predictions for all windows.

David I. Inouye, Purdue University
3

While a good baseline for sequences,
the windowing approach has several issues
• Fixed-window size

• How do you choose the fixed-window size?
• If too big, computational cost is high and learning could be slow.
• If too small, the window may lack sufficient history to predict.

• Lacks long-range dependencies (limited to window)
• Cannot model dependencies beyond the window size

• Predictions on each window are assumed to be independent
• Window overlap can help as the inputs are implicitly dependent
• Yet the outputs are not explicitly dependent

David I. Inouye, Purdue University
4

Recurrent neural networks (RNNs) process data sequentially
and can handle variable-sized input/output sequences

David I. Inouye, Purdue University
5Quoted from excellent article on RNNs with examples:

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs take an input + old hidden state
and produce output + new hidden state
• Let 𝑥, 𝑦, and ℎ denote the input, output, and hidden state sequences
• Each element in sequence could be any format including a vector, a discrete

integer, or even a full tensor itself (e.g., video processing
• Let 𝐿 corresponds to length of the sequence
• For example, 𝑥 = 𝑥", 𝑥#, ⋯ , 𝑥ℓ, ⋯ , 𝑥%
• Note this can be different for each sample
• For one-to-many or many-to-one, the sequences can be padded to be the same

length
• RNN (parametrized by 𝜃) written as recursion, where 𝑧+ is initialized to

some default value:
𝑦ℓ, ℎℓ = 𝑓- 𝑥ℓ, ℎℓ./

David I. Inouye, Purdue University
6

RNNs can be visualized with loop arrows
or unrolled with model copies

David I. Inouye, Purdue University
7

𝑥ℓ

𝑓"

𝑦ℓ

ℎℓ

Compact recursive
visualization shows
the RNNs simple
form.

𝑥#

𝑓"

𝑦#

ℎ#

𝑥$

𝑓"

𝑦$

ℎ$

𝑥%

𝑓"

𝑦%

ℎ% ℎ&'#

𝑥&

𝑓"

𝑦&

ℎ&ℎ(

…

…

Unrolled visualization shows that the same network is used multiple
times but with different inputs and different hidden states.

A vanilla RNN can be made with linear
and activation layers
• The RNN module can be written as 𝑓- ℎℓ./, 𝑥ℓ = ℎℓ, 𝑦ℓ
• ℎℓ = tanh 𝑊*ℎℓ+" +𝑊,𝑥ℓ + 𝑏*
• 𝑦ℓ = 𝑊-ℎℓ + 𝑏- = 𝑊-tanh 𝑊*ℎℓ+" +𝑊,𝑥ℓ + 𝑏-
• The parameters of the model are the weights and biases

𝜃 = 𝑊*,𝑊,,𝑊-, 𝑏*, 𝑏-

David I. Inouye, Purdue University
8

In these figures
𝑡 ≡ ℓ

Images and content adapted from excellent blogpost on LSTMS:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training RNNs can simply use backpropagation
where the whole chain is “backpropagated”
• Backpropagate gradients of

the loss function through the
computation graph
• PyTorch’s dynamic

computation graph enables
backprop for any length
sequence
• Each RNN model evaluation
𝑓- is logically the same model
so the gradients accumulate

David I. Inouye, Purdue University
9

𝑥#

𝑓"

𝑦#

ℎ#

𝑥$

𝑓"

𝑦$

ℎ$

𝑥%

𝑓"

𝑦%

ℎ% ℎ&'#

𝑥&

𝑓"

𝑦&

ℎ&ℎ(

…

…

ℒ

• Task is many to one.
• Architecture is simple.

Demo of simple RNNs
for sequence classification

David I. Inouye, Purdue University
10Right image from PyTorch tutorial https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html; See previous

slides for credit of image on left.

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

• Task is conceptually one to many but can be
implemented as many to many.
• Architecture is a little more complex.

Demo of simple RNNs
for sequence generation

David I. Inouye, Purdue University
11Right image from PyTorch https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html

Accessed on 3-28-2023; See previous slides for credit of image on left.

https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html

However, vanilla RNNs suffer from vanishing and exploding
gradients that result in only learning short-term dependencies

• Vanishing or exploding gradient are caused by recursive definition of hidden state
• For simplicity, let’s assume that 𝑤, = 0 so that we see the core issue.
• The last prediction is as follows:

0𝑦% = 𝑤-ℎ% +𝑤,𝑥% = 𝑤-ℎ% = 𝑤- 𝑤*ℎ%+" +𝑤,𝑥%+"
	 = 𝑤-𝑤*ℎ%+" = 𝑤-𝑤*#ℎ%+# = ⋯ = 𝑤-𝑤*%ℎ/

• The gradient of MSE loss for the last term is:
𝑑
𝑑𝑤-

ℓ 𝑦, 0𝑦% =
𝑑
𝑑𝑤-

𝑦 − 0𝑦% #
= 2 𝑦 − 0𝑦%

𝑑 0𝑦%
𝑑𝑤-

= 2 𝑦 − 0𝑦% 𝑤*%ℎ/
• If 𝑤* > 1.0, then the gradient exponentially increases w.r.t. sequence length 𝐿.
• If 𝑤* < 1.0, then the gradient exponentially decreases w.r.t. sequence length 𝐿.
• See demo on simple RNN.

David I. Inouye, Purdue University
12

Long Short-Term Memory (LSTM) units alleviate vanishing
gradient problem and enable learning of long-term dependencies

• ℎ0./1 = ℎ0./, 𝑥0 	(concatenate)

• +𝐶0 = tanh 𝑊2ℎ0./1 + 𝑏2 	
(new cell state information)

• 𝑓0 = 𝜎 𝑊3ℎ0./1 + 𝑏3 (forget gate)

• 𝑖0 = 𝜎 𝑊4ℎ0./1 + 𝑏4 (input gate)

• 𝐶0 = 𝑓0 ⊙𝐶0./ + 𝑖0 ⊙ +𝐶0
(update cell state)

• 𝑜0 = 𝜎 𝑊5ℎ0./1 + 𝑏5 (output gate)

• ℎ0 = 𝑜0 ⊙ tanh 𝐶0

David I. Inouye, Purdue University
13

Images and content adapted from excellent blogpost on LSTMS:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In this slide
𝑡 ≡ ℓ

𝐶)'#

ℎ)'# ℎ)

𝐶)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated Recurrent Units (GRU) simplify the LSTM
structure and seem to have better performance
• ℎ0./1 = ℎ0./, 𝑥0 	(concatenate)

• 𝑧0 = 𝜎 𝑊6ℎ0./1 	(forget/input gate)

• 𝑟0 = 𝜎 𝑊7ℎ0./1 	(hidden gate)

• 9ℎ0 = tanh 𝑊 𝑟0 ⊙ℎ0./, 𝑥0 	
(new hidden information)

• ℎ0 = 1 − 𝑧0 ⊙ℎ0./ + 𝑧0 ⊙ 9ℎ0 	
(update hidden)

David I. Inouye, Purdue University
14

Images and content adapted from excellent blogpost on LSTMS:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

In this slide
𝑡 ≡ ℓ

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs can be stacked into deep RNNs and
even bidirectional RNNs

David I. Inouye, Purdue University
15

𝑥#

𝑓"

𝑧#

ℎ#

𝑥$

𝑓"

𝑧$

ℎ$

𝑥%

𝑓"

𝑧%

ℎ% ℎ&'#

𝑥&

𝑓"

𝑧&

ℎ&ℎ(
…
…

𝑓"

𝑦#

𝑓"

𝑦$

𝑓"

𝑦%

𝑓"

𝑦&

ℎ# ℎ$ ℎ% ℎ&'# ℎ&ℎ(
…
…

Deep RNN

ℎ&'# ℎ&'$ ℎ&'% ℎ# ℎ(ℎ&

ℎ&

𝑥#

𝑓"
ℎ#

𝑥$

𝑓"
ℎ$

𝑥%

𝑓"
ℎ% ℎ&'#

𝑥&

𝑓"
ℎ(

…
…

𝑓"

𝑦#

𝑓"

𝑦$

𝑓"

𝑦%

𝑓"

𝑦&

…
…

Bidirectional RNN

Standard RNNs struggle for sequence-to-sequence
tasks because of limited hidden state capacity

• Example: Translation between French and English
• Could we use a one-to-one input/output RNN?
• Problem: Input sequence could have different length.
• Problem: The order of words is not the same in French and English.

• More common to use autoencoder structure with 2 RNNs.
• Problem: Challenging to encode entire sentence in hidden state.

David I. Inouye, Purdue University
16

ℎ&ℎ# ℎ$ ℎ% ℎ&'#ℎ(

𝑥#

𝑓"
ℎ#

𝑥$

𝑓"
ℎ$

𝑥%

𝑓"
ℎ% ℎ&'#

𝑥&

𝑓"
ℎ&ℎ(… 𝑓"

𝑦#

𝑓"

𝑦$

𝑓"

𝑦%

𝑓"

𝑦&

…ℎ!= ℎ"

Attention is a model architecture that enables the
decoder to efficiently use all encoder outputs
• Attention overcomes some of the challenges of RNN-based translation
• Attention allows long-range dependencies and avoids a completely

sequential view of the input and output
• Details will be in next lecture on attention and transformers.

David I. Inouye, Purdue University
17

David I. Inouye, Purdue University
17

ℎ&ℎ# ℎ$ ℎ% ℎ&'#ℎ(

𝑥#

𝑓"
ℎ#

𝑥$

𝑓"
ℎ$

𝑥%

𝑓"
ℎ% ℎ&'#

𝑥&

𝑓"
ℎ&ℎ(… 𝑓"

𝑦#

𝑓"

𝑦$

𝑓"

𝑦%

𝑓"

𝑦&

…
concat(ℎ#, ℎ$, ⋯ , ℎ&)

