
Credit: Mostly from
https://github.com/naokishibuya/deep-
learning/blob/master/python/transposed_convoluti
(https://github.com/naokishibuya/deep-
learning/blob/master/python/transposed_convoluti

Slight adaptions and showing zero-padded
equivalence

Up-sampling with Transposed Convolution
When we use neural networks to generate images, it usually involves up-sampling from low
resolution to high resolution.

There are various methods to conduct up-sample operation:

Nearest neighbor interpolation
Bi-linear interpolation
Bi-cubic interpolation

All these methods involve some interpolation which we need to chose like a manual feature
engineering that the network can not change later on.

Instead, we could use the transposed convolution which has learnable parameters [1].

Examples of the transposed convolution usage:

the generator in DCGAN takes randomly sampled values to produce a full-size image [2].
the semantic segmentation uses convolutional layers to extract features in the encoder and
then restores the original image size in the encoder so that it can classify every pixel in the
original image [3].

The transposed convolution is also known as:

Fractionally-strided convolution
Deconvolution

But we will only use the word transposed convolution in this notebook.

One caution: the transposed convolution is the cause of the checkerboard artifacts in generated
images [4]. The paper recommends an up-sampling followed by convolution to reduce such issues.
If the main objective is to generate images without such artifacts, it is worth considering one of the
interpolation methods.

https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convolution.ipynb

In [1]:

Convolution Operation

Input Matrix
We define a 4x4 matrix as the input. We randomly generate values for this matrix using 1-5.

In [2]:

The matrix is visualized as below. The higher the intensity the bright the cell color is.

In [3]:

Out[2]: array([[6, 3, 2, 4],
 [2, 5, 2, 6],
 [7, 5, 2, 6],
 [6, 2, 2, 8]])

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

inputs = np.random.randint(1, 9, size=(4, 4))
inputs

def show_matrix(m, color, cmap, title=None):
 rows, cols = len(m), len(m[0])
 fig, ax = plt.subplots(figsize=(cols, rows))
 ax.set_yticks(list(range(rows)))
 ax.set_xticks(list(range(cols)))
 ax.xaxis.tick_top()
 if title is not None:
 ax.set_title('{} {}'.format(title, m.shape), y=-0.5/rows)
 plt.imshow(m, cmap=cmap, vmin=0, vmax=1)
 for r in range(rows):
 for c in range(cols):
 text = '{:>3}'.format(int(m[r][c]))
 ax.text(c-0.2, r+0.15, text, color=color, fontsize=15)
 plt.show()

def show_inputs(m, title='Inputs'):
 show_matrix(m, 'b', plt.cm.tab10, title)

def show_kernel(m, title='Kernel'):
 show_matrix(m, 'r', plt.cm.RdBu_r, title)

def show_output(m, title='Output'):
 show_matrix(m, 'g', plt.cm.GnBu, title)

In [4]:

We are using small values so that the display look simpler than with big values. If we use 0-255 just
like an gray scale image, it'd look like below.

In [5]:

Apply a convolution operation on these values can produce big values that are hard to nicely
display.

Also, we are ignoring the channel dimension usually used in image processing for a simplicity
reason.

show_inputs(inputs)

show_inputs(np.random.randint(100, 255, size=(4, 4)))

Kernel
We use a 3x3 kernel (filter) in this example (again no channel dimension).

We only use 1-5 to make it easy to display the calculation results.

In [6]:

In [7]:

Convolution
With padding = 0 (padding='VALID') and strides = 1, the convolution produces a 2x2 matrix.

: height and width of the input

: height and width of the kernel

: padding

: strides

: height and width of the output

With the 4x4 matrix and 3x3 kernel with no zero padding and stride of 1:

,𝐻𝑚 𝑊𝑚

,𝐻𝑘 𝑊𝑘

𝑃

𝑆

𝐻,𝑊

𝑊 = + 1
− +2𝑃𝑊𝑚 𝑊𝑘

𝑆

𝐻 = + 1
− +2𝑃𝐻𝑚 𝐻𝑘

𝑆

+ 1 = 2
4−3+2⋅0

1

Out[6]: array([[2, 3, 2],
 [1, 4, 2],
 [3, 4, 1]])

kernel = np.random.randint(1, 5, size=(3, 3))
kernel

show_kernel(kernel)

So, with no zero padding and strides of 1, the convolution operation can be defined in a function
like below:

In [8]:

The result of the convolution operation is as follows:

In [9]:

In [10]:

One important point of such convolution operation is that it keeps the positional connectivity
between the input values and the output values.

For example, output[0][0] is calculated from inputs[0:3, 0:3] . The kernel is used to link
between the two.

In [11]:

Out[9]: array([[94, 74],
 [82, 75]])

Out[11]: 94

def convolve(m, k):
 m_rows, m_cols = len(m), len(m[0]) # matrix rows, cols
 k_rows, k_cols = len(k), len(k[0]) # kernel rows, cols

 rows = m_rows - k_rows + 1 # result matrix rows
 cols = m_rows - k_rows + 1 # result matrix cols

 v = np.zeros((rows, cols), dtype=m.dtype) # result matrix

 for r in range(rows):
 for c in range(cols):
 v[r][c] = np.sum(m[r:r+k_rows, c:c+k_cols] * k) # sum of the el
 return v

output = convolve(inputs, kernel)
output

show_output(output)

output[0][0]

In [12]:

In [13]:

In [14]:

So, 9 values in the input matrix is used to produce 1 value in the output matrix.

Going Backward
Now, suppose we want to go the other direction. We want to associate 1 value in a matrix to 9
values to another matrix while keeping the same positional association.

For example, the value in the left top corner of the input is associated with the 3x3 values in the left
top corner of the output.

This is the core idea of the transposed convolution which we can use to up-sample a small image
into a larger one while making sure the positional association (connectivity) is maintained.

Let's first define the convolution matrix and then talk about the transposed convolution matrix.

Convolution Matrix
We can express a convolution operation using a matrix. It is nothing but a kernel matrix rearranged
so that we can use a matrix multiplication to conduct convolution operations.

Out[12]: array([[6, 3, 2],
 [2, 5, 2],
 [7, 5, 2]])

Out[13]: array([[2, 3, 2],
 [1, 4, 2],
 [3, 4, 1]])

Out[14]: 94

inputs[0:3, 0:3]

kernel

np.sum(inputs[0:3, 0:3] * kernel) # sum of the element-wise multiplication

In [15]:

In [16]:

In [17]:

If we reshape the input into a column vector, we can use the matrix multiplication to perform
convolution.

In [18]:

def convolution_matrix(m, k):
 m_rows, m_cols = len(m), len(m[0]) # matrix rows, cols
 k_rows, k_cols = len(k), len(k[0]) # kernel rows, cols

 # output matrix rows and cols
 rows = m_rows - k_rows + 1
 cols = m_rows - k_rows + 1

 # convolution matrix
 v = np.zeros((rows*cols, m_rows, m_cols))

 for r in range(rows):
 for c in range(cols):
 i = r * cols + c
 v[i][r:r+k_rows, c:c+k_cols] = k

 v = v.reshape((rows*cols), -1)
 return v, rows, cols

C, rows, cols = convolution_matrix(inputs, kernel)

show_kernel(C, 'Convolution Matrix')

def column_vector(m):
 return m.flatten().reshape(-1, 1)

In [19]:

Out[19]: array([[6],
 [3],
 [2],
 [4],
 [2],
 [5],
 [2],
 [6],
 [7],
 [5],
 [2],
 [6],
 [6],
 [2],
 [2],
 [8]])

x = column_vector(inputs)
x

In [20]: show_inputs(x)

In [21]:

Out[21]: array([[94.],
 [74.],
 [82.],
 [75.]])

output = C @ x
output

In [22]:

We reshape it into the desired shape.

In [23]:

In [24]:

This is exactly the same output as before.

Out[23]: array([[94., 74.],
 [82., 75.]])

show_output(output)

output = output.reshape(rows, cols)
output

show_output(output)

Transposed Convolution Matrix
Let's transpose the convolution matrix.

In [25]: show_kernel(C.T, 'Transposed Convolution Matrix')

Let's make a new input whose shape is 4x1.

In [26]:

In [27]:

In [32]:

We matrix-multiply C.T with x2 to up-sample x2 from 4 (2x2) to 16 (4x4). This operation has
the same connectivity as the convolution but in the backward direction.

As you can see, 1 value in the input x2 is connected to 9 values in the output matrix via the
transposed convolution matrix.

Out[26]: array([[1],
 [3],
 [2],
 [3]])

x2 = np.random.randint(1, 5, size=(4, 1))
x2

show_inputs(x2)

show_inputs(x2.reshape(2,2))

In [28]:

Out[28]: array([[2.],
 [9.],
 [11.],
 [6.],
 [5.],
 [19.],
 [27.],
 [12.],
 [5.],
 [24.],
 [29.],
 [9.],
 [6.],
 [17.],
 [14.],
 [3.]])

output2 = (C.T @ x2)
output2

In [29]: show_output(output2)

In [30]:

Out[30]: array([[2., 9., 11., 6.],
 [5., 19., 27., 12.],
 [5., 24., 29., 9.],
 [6., 17., 14., 3.]])

output2 = output2.reshape(4, 4)
output2

In [31]: show_output(output2)

In [46]: # ADDED BY DAVID INOUYE
import torch

x2_mat = x2.reshape(2,2)
kernel
x2_inflated = np.zeros((6,6))
x2_inflated[1,1] = x2_mat[0,0]
x2_inflated[1,3] = x2_mat[0,1]
x2_inflated[3,1] = x2_mat[1,0]
x2_inflated[3,3] = x2_mat[1,1]
#x2_inflated = x2_inflated[1:,1:]
output2_equiv = torch.conv2d(torch.from_numpy(x2_inflated).reshape(1, 1, *x
 torch.from_numpy(kernel).float().reshape(1, 1,

show_inputs(x2_mat)
show_inputs(x2_inflated)
show_kernel(kernel)
show_output(output2_equiv)

Summary
As discussed at the beginning of this notebook the weights in the tranposed convolution matrix can
be trained as part of a neural network back-propagation process. As such, it eliminates the
necessity for fixed up-sampling methods.

Note: we can emulate the transposed convolution using a direct convolution. We first up-sample
the input by adding zeros between the original values in a way that the direct convolution produces
the same effect as the transposed convolution. However, it is less efficient due to the need to add
zeros to up-sample the input before the convolution.

References

[1] A guide to convolution arithmetic for deep learning
Vincent Dumoulin, Francesco Visin

https://arxiv.org/abs/1603.07285 (https://arxiv.org/abs/1603.07285)

[2] Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks

https://arxiv.org/abs/1603.07285

Alec Radford, Luke Metz, Soumith Chintala

https://arxiv.org/pdf/1511.06434v2.pdf (https://arxiv.org/pdf/1511.06434v2.pdf)

[3] Fully Convolutional Networks for Semantic Segmentation
Jonathan Long, Evan Shelhamer, Trevor Darrell

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
(https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf)

[4] Deconvolution and Checkerboard Artifacts
Augustus Odena, Vincent Dumoulin, Chris Olah

https://distill.pub/2016/deconv-checkerboard/ (https://distill.pub/2016/deconv-checkerboard/)

https://arxiv.org/pdf/1511.06434v2.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://distill.pub/2016/deconv-checkerboard/

