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ABSTRACT

Models that learn spurious correlations from training data often fail when deployed in new envi-
ronments. While many methods aim to learn invariant representations to address this, they often
underperform standard empirical risk minimization (ERM). We propose a data-centric alternative
that shifts the focus from learning invariant representations to leveraging invariant data pairs—pairs
of samples that should have the same prediction. We prove that certain counterfactuals naturally sat-
isfy this invariance property. Based on this, we introduce Noisy Counterfactual Matching (NCM),
a simple constraint-based method that improves robustness by leveraging even a small number of
noisy counterfactual pairs—improving upon prior works that do not explicitly consider noise. For
linear causal models, we prove that NCM’s test-domain error is bounded by its in-domain error
plus a term dependent on the counterfactuals’ quality and diversity. Experiments on synthetic data
validate our theory, and we demonstrate NCM’s effectiveness on real-world datasets.

1 Introduction

Spurious correlations are misleading patterns in the training data. The relationships between features and the target
do not hold across domains or environments. Models trained on such correlations may perform well on their training
distribution yet fail to generalize once the environment changes, because the correlations reflect coincidental or con-
founded associations rather than true causal links. Addressing spurious correlations is therefore critical for building
models that remain reliable under distribution shift—especially in high-stakes domains such as healthcare, finance,
and public services. Spurious correlation falls under the broader problem of domain generalization (DG), which seeks
to generalize to new unseen test domains beyond the original training domains.

Invariant representation learning tackles the DG problem by forcing some distributional property of the representation
to be stable across domains [Peters et al., 2016, Li et al., 2018c,b, Arjovsky et al., 2019]. Approaches range from
matching the marginal p(h(x)) or conditional p(h(x)|y) [Li et al., 2018c], to causality-inspired objectives such as
Invariant Causal Prediction (ICP) [Peters et al., 2016] and Invariant Risk Minimization (IRM) [Arjovsky et al., 2019],
which match the conditional p(y|h(x)). Both MatchDG [Mahajan et al., 2021] and Domain Invariant Representation
Learning with Domain Transformations (DIRT) [Nguyen et al., 2021] consider a two stage approach to invariant
representation learning. In the first stage, they estimate a mapping between domain distributions; MatchDG uses
iterative contrastive learning to find data pairings between domains while DIRT used StarGAN Choi et al. [2018] to
learn an explicit map between domains. In the second stage, they add an invariant representation regularization term
that encourages the latent representations of pairs to be close. Although theoretically grounded, these methods often
underperform empirical risk minimization (ERM) on modern benchmarks [Gulrajani and Lopez-Paz, 2021, Koh et al.,
2021, Bai et al., 2024], which may be due to the strong assumptions that do not necessarily hold in practice.

Inspired by the recent DG works that leverage additional data beyond the standard DG setup Blanchard et al. [2011b],
we consider the following research question: Can shifting the focus from learning invariant representations to
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leveraging invariant data provide a more direct and practical path toward domain generalization? Figure 1
illustrates the core intuition of why invariant pairs could be useful for robustness. This can be viewed as a data-centric
viewpoint of MatchDG and DIRT that focuses on estimating a robust classifier given data pairs between domains
(corresponding to stage two of MatchDG and DIRT). While at first glance it may seem that collecting such invariant
pairs would be infeasible, we suggest that they could be reasonably acquired in practice under certain scenarios. For
example, when the spurious correlations are artifacts of a measurement process (e.g., x-ray machine, microscope,
staining methodology, etc.), then an invariant pair could be collected by measuring the same specimen under two
different environments (e.g., send the same patient to two x-ray machines). Second, when a domain expert can identify
spurious features, they can directly edit spurious features of the sample. An example of this would be using image
editing software including AI-based image editing to change the background of an image while keeping the subject
the same (e.g., putting a cow on a boat or a fish in a desert).
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Figure 1: While ERM θ̂ on the training domains (circles
and triangles) is not robust to the change in spurious fea-
ture in the unseen test domain (pluses), a robust linear
classifier θ∗ can be estimated by making the classifier or-
thogonal to the difference between a single invariant pair
(green line). The color represents label y.

While these are some natural ways to collect such pairs,
the focus of our paper is to theoretically and empirically
analyze whether invariant pair data could be helpful for
robustness—i.e., this is a future-looking paper. Indeed,
the current lack of invariant pair datasets should not lead
to the conclusion that invariant pairs could not be col-
lected, but rather that the utility of such pairs is not ob-
vious. We hypothesize that invariant data pairs could en-
able a data-driven way to implicitly encode knowledge of
spurious correlations instead of requiring explicit speci-
fication (e.g., specifying a causal graphical model). To
explain via an analogy, collecting invariant pairs could
be to spurious correlations as collecting class labels is to
classification. In both cases, explicitly defining the target
object (either spurious correlations or class) can be very
challenging if not impossible but implicitly defining them
through data is significantly easier.

The natural next question is: How can these invariant
pairs be used for robustness? MatchDG [Mahajan et al.,
2021] and DIRT [Nguyen et al., 2021] propose a simple
regularization that encourages the latent representations
of pairs to be close. However, these works do not address
two questions critical for a data-centric viewpoint: How do we theoretically and practically handle noise in the in-
variant data pairs? How many pairs are needed for robustness theoretically and empirically? The first addresses the
inevitable noise incurred when collecting or creating invariant data pairs, i.e., they are not perfect pairs. The second
addresses the practical question of whether it may be cost-effective to collect such pairs, which may be costly to obtain
(though not necessarily).

To address these data-centric questions, we analyze the theoretical guarantees and trade-offs of using invariant pairs
(pairs of inputs that should have the same prediction), focusing on the linear setting. We formalize the spurious corre-
lation setting using a causal perspective, proving that certain spurious counterfactuals naturally create these invariant
pairs. Based on this, we introduce Noisy Counterfactual Matching (NCM), a simple method that adds a linear con-
straint to ERM. This constraint, derived from the SVD of the differences between pairs, forces the model to ignore
the spurious features identified by the pairs. We prove that NCM is robust to spurious correlations even with a small
number of noisy pairs, and we validate our findings empirically. We summarize our main contributions as:

1. We introduce Noisy Counterfactual Matching, a simple, data-centric method that adds a constraint to ERM to
improve robustness to spurious correlation using a small set of noisy invariant pairs.

2. We theoretically analyze NCM’s robustness by proving an out-of-domain error bound that decomposes into the
in-domain risk and a term dependent on the quality of provided pairs.

3. We show that the number of pairs needed can scale linearly with the spurious feature dimension.
4. We empirically validate our theory, demonstrating improved robustness on synthetic data and on real-world bench-

marks via linear probing on a pretrained CLIP model.

Notation: We use lowercase letters to denote random variable (e.g., y), bold lowercase letters to denote random
variables (e.g., x), and bold italic letters for their realizations (e.g., x). Capital letters represent matrices or constants
(e.g., U , N ), while calligraphic letters denote sets, domains, or ranges (e.g.,M, E , X ). The notation [N ] represents the
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index set 1, 2, . . . , N . We denote the r-th largest singular value by σr, and Qr denotes the r-largest singular values’
corresponding singular vectors. ∥A∥Λ := ∥A⊤Λ1/2∥ is Mahalanobis-induced spectral norm.

Paper Structure In Section 2, we introduce the problem setup and causal background for this paper. Then we
introduce our methods in Section 3 and analyze the theoretical guarantee in Section 4. Then, we empirically validate
our NCM method in Section 5 and compare our method with related works in Section 6.

2 Problem Setup

To formalize the goal of achieving robustness to spurious correlations, we consider a set of domains E that differ
primarily in their spurious features. Our objective is to learn an optimal classifier that generalizes across these domains
using the available training data. Unlike the standard domain generalization (DG) setup [Blanchard et al., 2011a], we
assume access not only to the training data but also to a small set of invariant data pairs. Although our ultimate goal
is the same as in DG, i.e., achieving strong performance on unseen test domains, our data requirements differ. DG
typically relies on labeled datasets collected from multiple environments, whereas our setting requires only labeled
training data and a small collection of invariant data pairs, as defined below.

In the following three subsections, we introduce the key definitions underlying our setup and address the following
questions:

1. How do we define the set of environments?

2. What constitutes a spurious correlation?

3. What are invariant pairs, formally?

2.1 Causality Preliminaries

To formally define the set of environments, we introduce some related concepts in causality. In summary, we consider
that each domain (or environment2) corresponds to a distinct structural causal model (SCM) [Pearl, 2009, Definition
7.1.1], the differences of the SCMs are equivalent to interventions, and counterfactuals are based on applying two
different SCMs to the same exogenous noise. First, we formally define an SCM.

Definition 1 (Structural Causal Model [Pearl, 2009, Definition 7.1.1]). An SCM M is represented by a 3-tuple
⟨U ,V,F⟩, where U is the set of exogenous noise variables, V is a set of causal variables, and F := {f1, f2, . . . , fm}
denotes the set of causal mechanisms for each causal variable in Z given its corresponding exogenous noise and
parents, i.e., vi = fi(ui,vPa(i)).

We denote causal mechanism in domain e as Fe := {fe,1, fe,2, . . . , fe,m}. Given this, we consider two notions when
comparing two different causal models: intervention set and counterfactuals.

Definition 2 (Intervention Set). Given two SCMsM andM′ defined on the same set of exogenous noise and causal
variables, the intervention set is defined only in terms of their causal mechanisms F and F ′ respectively I(Fe,Fe′) =
{i : fe,i ̸= fe′,i} .

Note that this definition allows multiple types of intervention including soft, hard or do-style interventions. We now
define counterfactual pairs as applying two SCMs to the same exogenous noise based on the original definition of
counterfactuals in SCMs [Pearl, 2009, Definition 7.1.5].

Definition 3 (Counterfactual Pair). A pair of causal variable realizations (vA,v
′
A) whereA ⊆ V is a subset of causal

variables is a counterfactual pair between two SCMsM andM′ (with the same set of exogenous noise variables and
causal variables) if and only if there exists a exogenous noise realization u such that vA is the solution toM and v′

A
is the solution toM′.

Note that this is different than estimating counterfactuals given some factual evidence, which would require the three
steps of abduction, action, and prediction. Rather, here we simply define the theoretic notion of a CF pair between two
SCMs. However, in practice, we expect that perfect CF pairs will not be feasible so we focus on providing theoretic
analysis of noisy CF pairs.

2We will use domain and environment interchangeably.
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2.2 Latent Spurious Correlations

After introducing the causal preliminaries, we now formalize the latent spurious correlations by specifying the collec-
tion of SCMs that define domains. This follows many latent SCM multi-domain works [Liu et al., 2022, Zhang et al.,
2023, von Kügelgen et al., 2023, Zhou et al., 2024].

Definition 4 (Class of Latent Domain SCMs). Letting E denote the set of domains, a latent domain SCM class is a set
of latent SCMsME = {Me}e∈E such that:

1. The causal models share the same set of exogenous noise variables, causal variables, and exogenous noise distri-
bution PU .

2. The causal variables V are split into observed variables X ∪ Y and latent variables Z .
3. The models share the same causal mechanisms for the observed variables, denoted by gx and gy, and can only have

latent variables in Z as parents.

The latent causal mechanisms for the i-th variable in Z for the e-th domain will be denoted as fe,i, and the induced
distribution over the observed random variables for each domain will be denoted by Pe(x, y). The intervention set
among the SCM class is defined as I(FE) :=

⋃
e,e′∈E I(Fe,Fe′) .

We now give our primary spurious correlation assumption that the domains in the class can only intervene on spurious
latent variables with respect to the target variable y, i.e., non-ancestors of y.

Assumption 1 (Spurious Correlation Latent SCM Class). Any variable in the intervention set must be non-ancestors
of y, i.e., I(FE) ∩ Anc(y) = ∅. Equivalently, all domains must share the mechanisms for ancestors of y, i.e., fe,i =
fe′,i, ∀i ∈ Anc(y), e, e′ ∈ E .

This assumption defines the scope of our work to spurious correlation, which limits the types of shift that we could see
at test time to only spurious features, i.e., non-ancestors of y. However, this assumption does not limit the strength of
these shifts. Intuitively, if the sample x encodes information about a descendant of y, a predictor trained on x cannot
be invariant across interventional distributions because x is a collider of all the latent causal variables and thus e and y
will not be d-separated. This is true even when interventions only target spurious features. We include an illustration
of causal DAG Figure 3 and a detailed explanation in Section A.1.

2.3 Invariant Pairs are Spurious Counterfactual Pairs

Finally, we define and characterize the invariant pairs under optimally robust classifier.

Definition 5 (Optimally Robust Classifier). Given a set of environments E , the optimally robust classifier is defined
as:

h∗
E := argmin

h
max
e∈E

E(x,y)∼Pe
[ℓ(h(x), y)] ,

where the optimization is over all possible predictive functions h.

Definition 6 (Invariant Pair). Given a set of environments E , a pair of distinct inputs (x,x′) with x ̸= x′ is an invariant
data pair if and only if the predictions under the optimally robust classifier are equal, i.e., h∗

E(x) = h∗
E(x

′), where h∗
E

is defined as in Definition 5.

Intuitively, invariant data pairs are inputs that should have the same prediction under a robust model. For example, in
medical diagnosis, X-rays from two different machines of the same patient should yield the same probabilities, without
requiring knowledge of the patient’s actual diagnosis.

Given the causal model setup , we can now prove that counterfactuals within a spurious correlation latent SCM class
are invariant pairs w.r.t. the corresponding domain distributions.

Proposition 1 (Spurious Counterfactuals are Invariant Pairs). Given a spurious correlation latent SCM classME and
a strictly convex loss function ℓ, any observed counterfactual pair (xe,xe′) betweenMe ∈ME andMe′ ∈ME will
be an invariant pair w.r.t. the optimally robust classifier h∗

E based on ℓ induced by the domain distributions {Pe}e∈E
almost surely, i.e., h∗

E(xe) = h∗
E(xe′).

See proof in Section C.1. This elegantly connects spurious counterfactuals and invariant pairs (though again we note
that invariant pairs could be defined for other perspectives). The natural next question is: Is it possible to collect such
pairs in reality? We argue that while perfect counterfactual pairs are not possible, noisy or approximate counterfactual
pairs could be reasonably simple to collect in certain scenarios (see Section A.2)
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3 Handling Noise in Invariant Pairs via Noisy Counterfactual Matching

We now turn to the problem of estimating a robust classifier given invariant pairs. While MatchDG provided a method
for estimating the classifier given invariant pairs (i.e., MatchDG’s stage 2), MatchDG did not explicitly consider the
noise that is likely inevitable in invariant data pairs, i.e., the invariant pairs may not have the exact same prediction
under the optimally robust classifier. Thus, we propose a way to handle noisy invariant pairs. We believe handling
noise is critical for any practical application of our data-centric approach.

Noiseless Approach Given the invariant pairs as input, MatchDG [Mahajan et al., 2021] in Stage 2 reads

min
h

E(x,y)∼Ptrain [ℓ(h(x; θ), y)], s.t. dist(h(xej ; θ), h(xej→e′j
; θ)) = 0 ∀j. (1)

The idea is to force the invariant pairs have identical latent representations while minimizing the ERM loss. Mahajan
et al. [2021, Theorem 1] show the above objective find optimal robust classifier if infinite noiseless pairs are available.
3 However, as described, invariant pairs are inherently noisy and hard to get. We propose our method that could handle
finite pairs as well as noisy pairs.

Noisy Counterfactual Matching (NCM). Given a set of noisy counterfactual pairs from the training domains
{(xej ,xe′j

)}kj=1, these pairs are not invariant due to noise (Proposition 1), i.e., h∗
E(xej ) ̸= h∗

E(xe′j
). We define

the noisy counterfactual difference matrix:

∆̃x :=
[
xe1 − xe′1

, . . . , xek − xe′k

]
∈ Rd×k. (2)

When the pairs are noisy, ∆̃x typically has full rank min{k, d}. Directly enforcing the classifier to be orthogonal to all
these noisy directions (as in Equation (1)) can be pathological: if k > |IFE |, the constraint forces θ to be orthogonal
to a larger subspace than the true spurious feature space, leading to degraded accuracy.

To mitigate this, we propose NCM:

min
θ

E(x,y)∼Ptrain [ℓ(h(x; θ), y)] s.t. θ⊤Q̃r = 0, (3)

where Q̃r ∈ Rd×r consists of the top-r left singular vectors from the SVD of ∆̃x. The truncation limits the orthogo-
nality constraint to the most significant noisy directions, preventing over-restriction of the classifier.

With perfect counterfactuals, Q̃r (without truncation) exactly spans the spurious subspace, recovering the intuition be-
hind MatchDG. However, MatchDG regularizes via a Frobenius-norm penalty that treats all directions equally, thereby
also penalizing invariant features. Like NCM, one could alternatively use a hard constraint formulation instead of the
penalty form; however, in that case, the classifier would collapse to a trivial constant solution. In contrast, NCM en-
forces a hard constraint only on the top r singular directions, thereby avoiding penalties on invariant dimensions. This
makes NCM more selective: it eliminates dominant spurious effects while preserving invariant predictive structure,
and thus maintains robustness through this selective hard constraint.

There are many efficient algorithms including reparameterization approach, projected gradient descent to directly solve
the constrained problem (3), we refer the reader to Algorithm 1 in Section B for a detailed implementation.

4 Theoretic Guarantees of NCM for Linear Models

In this section, we provide theoretic guarantees of NCM (3) for both linear regression and logistic regression. Our study
proceeds through four steps: (1) we decompose the test error into in-domain error and spurious subspace misalignment
(Theorem 1); (2) we quantify this misalignment using Wedin’s sinΘ theorem [Wedin, 1972] (Corollary 3); (3) we
characterize the out-of-domain risk under ERM (Corollary 2); and (4) we show that oracle CF pairs in (3) recover the
optimal robust classifier (Corollary 4).

We consider both logistic regression and linear regression tasks, where the data generation processes are linear in
both cases, differing only in the target variable y. In logistic regression, gy(z) is a sign function composed with a
linear function, while in linear regression, gy(z) is a linear function. Given the data generating process, it is natural
to consider the linear regressor hE parameterized by θ to predict y from x, and the optimally robust classifier h∗

E
parameterized by θ∗.

3In the paper, the representation function they choose is at the output layer, so we drop the classifier head and focus on matching
the outputs of the model directly.
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To quantify the deviation of a test domain e+ ∈ Etest from the training domain Etrain, we introduce a conceptual random
variable defined as xe+→e := gx(fe(u)), where u is the same random variable shared by xe+ , as xe+ = gx(fe+(u)).
Therefore, for each realization of u, the corresponding realization of (xe+ ,xe+→e), denoted as (xe+ ,xe+→e), forms
an oracle CF pair. Note that the conceptual random variable xe+→e is used only for analysis and does not need to be
observed in the training data. Given that the exogenous noise follows the distribution PU (cf. Definition 4), xe+→e

follows the training domain distribution p(xe). Building upon it, we introduce population second moment matrix and
its SVD as follows Me+,Etrain

:=
∑

e∈Etrain
P(e)Eu[(xe+ − xe+→e)(xe+ − xe+→e)

⊤] = Q|I(FE)|Λ|I(FE)|Q
⊤
|I(FE)|,

where Q|I(FE)| is the relevant spurious subspace for the latent SCM classME where E contains the training domains
and the e+ test domain, and P(e) is the marginal distribution of environments in the training distribution. Note that
the singular values greater than |I(FE)| are zero due to our spurious correlation assumption (Assumption 1). We have
the following guarantee on NCM (3).
Theorem 1 (Test-Domain Error Bound for NCM with Linear Models). Assuming that the environments are defined
by a class of linear spurious correlation latent SCMsME (Assumption 1), the test-domain risk of any θ that satisfies
the NCM constraint (3) for any test domainMe+ ∈ME is bounded as follows.

a) For logistic regression with log loss ℓLL, the following bound holds:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)]︸ ︷︷ ︸
Term I: In-domain error

+ ∥θ∥
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥
Λ|I(FE )|

.︸ ︷︷ ︸
Term II: Spurious subspace misalignment

b) Similarly, for linear regression with squared error loss ℓSE, the following holds:

E(xe+ ,ye+ )∼Ptest [ℓSE(θ
⊤xe+ , ye+)] ≤ 2E(x,y)∼Ptrain [ℓSE(θ

⊤x, y)]︸ ︷︷ ︸
Term I: In-domain error

+2∥θ∥2
∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

.︸ ︷︷ ︸
Term II: Spurious subspace misalignment

Furthermore, Term II in (a) and (b) can be bounded using the following:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+), (4)

where s := min{r, |I(FE)|} is the minimum of the user-specified r and the dimension of the relevant spurious feature
subspace, dist2(Q,Q′) := ∥QQ⊤ − Q′Q′⊤∥2 denotes the squared distance between subspaces [Chen et al., 2021],
and λ1(e

+) and λs+1(e
+) denote the largest and (s+ 1)-th largest eigenvalue of Me+,Etrain

respectively.

See the appendix for proofs. The following comments are in order.

(i) Error decomposition: Observe that the test error due to spurious correlations can be categorized into two terms.
Term I: in-domain error and Term II: weighted spurious subspace misalignment. In the extreme case, when we have
full knowledge of the oracle counterfactual pairs and the the ambient true dimension |I(FE)|, Term II vanishes,
and thus, the test error reduced to in-domain error. Intuitively, Term II quantifies the weighted impact of subspace
misalignment, where the weights are given by the eigenvalues of the true spurious subspace.

(ii) Accuracy trade-off induced by r: The second term in (4) captures the model misspecification error due to
r ̸= |I(FE)|. In practice, |I(FE)| is unknown, so one may either overestimate or underestimate it through r. Our
theory quantifies the impact explicitly within the bound:

(a) If we overestimate the spurious feature dimension, i.e., choose r > |I(FE)|, then s = |I(FE)|, and hence
λs+1(e

+) = λ|I(FE)|+1(e
+) = 0. In this case, Term II vanishes, but Term I increases since a larger r reduces

the feasible region Qr,⊥, resulting in greater in-domain error.
(b) If we underestimate the spurious feature dimension, i.e., choose r < |I(FE)|, then s = r, and thus λs+1(e

+) =
λr+1(e

+) > 0, which increases monotonically as r decreases. Here, a smaller r lowers Term I as the feasible
region Qr,⊥ is larger but simultaneously amplifies Term II due to the larger λr+1(e

+).

This elegant trade-off is clearly observed in both synthetic and real-world datasets, as shown in the arc-shaped curves
in Figure 2b and Figure 7, which illustrate how the model performance varies with different values of r.

One simple corollary of our theorem occurs in the extreme case when r = 0 such that NCM reduces to ERM. In
this extreme case, we have that the subspace distance term is zero because s = 0 and λr+1(e

+) = λ1(e
+), which

is typically large and reflects the spurious correlation captured by ERM. This yields the following test-domain error
bound for ERM, which is novel to the best of the authors’ knowledge. This clearly shows how ERM error increases
with increasingly stronger shifts in the test domain.

6
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Corollary 2 (Test-Domain Error Bound for ERM with Linear Models). Given the same assumptions as Theorem 1,
the test-domain error for ERM for logistic regression is bounded by:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)] + ∥θ∥
√
λ1(e+),

and similarly for linear regression.

Next, we leverage Wedin’s sinΘ theorem Wedin [1972] to further characterize the spurious subspace misalignment
term (Term II in Theorem 1) based on the counterfactual noise ε := ∆̃x −∆x, where ∆x denotes the corresponding
perfect counterfactuals. For this corollary, we assume that the oracle counterfactuals corresponding to the observed
counterfactuals spans the entire spurious subspace. Thus, we can isolate the effect of noisy counterfactuals compared to
oracle counterfactuals. This shows that if the counterfactuals are diverse enough (i.e., they span the spurious subspace)
and have bounded noise levels, then we can improve test-domain performance.

Corollary 3 (Test-Domain Bound in Terms of Counterfactual Noise). Instate the setting in Theorem 1. Fur-
ther, assume that the oracle counterfactual difference ∆x has a rank equal to the spurious feature subspace, i.e.,
rank(∆x) = |I(FE)|, and suppose the noise matrix ε := ∆̃x − ∆x (with singular values of ∆x denoted by σj)
satisfies σ1 ≤ (1− 1/

√
2)(σs − σs+1) where s = min{r, |I(FE)|}. Then, for any θ that satisfies the NCM constraint

(3) and any test domain satisfyingMe+ ∈ME , the following holds for logistic regression:

E(xe+ ,ye+ )∼Ptest

[
ℓLL(θ

⊤xe+ , ye+)
]
≤ E(x,y)∼Ptrain [ℓLL(θ

⊤x, y)] + ∥θ∥

(
2
√
λ1(e+)

σs − σs+1
∥ε∥+

√
λs+1(e+)

)
,

and similarly for linear regression.

Choice of Clean ∆x. It is critical to note that we do not make any assumptions about the noise except that
σ1 ≤ (1 − 1/

√
2)(σs − σs+1).

4 Thus, given any observed noisy counterfactuals, we could actually choose any
such real counterfactual matrix that satisfies this condition, i.e., we could theoretically choose an oracle counterfactual
matrix ∆x that spans the spurious space and minimizes the bound. Therefore, this result shows that as long as the
counterfactuals are reasonably diverse (i.e., they span the spurious subspace) and they are not too noisy, our NCM
approach will improve the robustness to spurious correlation.

A Small Number of Perfect Counterfactual Pairs Is Sufficient. Additionally, we note that a simple corollary of
this result is that by choosing s ≥ |I(FE)| with perfect counterfactuals (i.e., no noise), then the test-domain error will
equal the train domain error. Furthermore, to satisfy the rank condition, theoretically we only need |I(FE)| noiseless
pairs whose differences are linearly independent of each other. This emphasizes that in the ideal case only a small
number of diverse pairs are needed. In contrast to the IRM requires |Etrain| ≥ I(FE) [Rosenfeld et al., 2020]. If there
is noise, then more pairs will be needed but we expect that still only a small number is needed to improve robustness.
We further observe this empirically (cf. Section 5).

5 Empirical Evaluation

In this section, we present experiments on both synthetic and real world datasets. (i) The synthetic dataset is used
to validate the theoretical results. We evaluate robustness using both noisy and oracle CF pairs, and confirm the few
shot counterfactual pairs requirement of the CF pairs and the spurious feature dimension (cf. Corollary 3). We also
validate the trade-off effect of r (cf. Theorem 1 (ii)). (ii) Beyond synthetic data, we evaluate NCM (3) via linear
probing on a frozen CLIP model [Radford et al., 2021] across three real world datasets: ColoredMNIST, PACS,
and Waterbirds. While CLIP already demonstrates strong zero shot transfer [Radford et al., 2021], NCM (3) further
improves robustness to spurious correlations over CLIP. (iii) We compare three matching strategies: random matching,
nearest neighbor matching [Mahajan et al., 2021], and NCM (3), and show the superiority of CF based approaches.
Details on data generation, validation, and hyperparameter tuning are provided in Section D.2. All experiments report
in-domain validation in the main text, with additional results including oracle-validation, hyperparameter sensitivity,
and experiments with traditional deep models as well as a result from the additional PACS dataset are provided in
Section E.

4Such a technical condition results from Wedin’s sinΘ theorem [Wedin, 1972]. In reality, we found that the performance of
NCM still outperforms ERM even when such a condition is not satisfied (cf. Section 5) and could be benefited by utilizing more
pairs (cf. Figure 2a).
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(a) Acc vs. k under different noise, r = min(k, 20).
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(b) Acc vs. r under different noise, k = 100.

Figure 2: Result on the synthetic dataset with NCM. We report both in-domain test accuracy (in-test accuracy) and
test domain accuracy (test accuracy). We choose m = 100 and |I(FE)| = 20 (denoted by vertical dash line). The
horizontal lines represent the ERM accuracy and oracle accuracy (ERM train on test domain). The vertical line at 20
denotes I(FE). ε = 0 means oracle CF pairs. The solid curves represent the mean over 10 runs with shaded regions
indicating standard deviations.

Table 1: Main Results with in-domain validation. Results
with oracle validation can be found in Table 3, Table 4, and
Table 5 in the appendix.“WG” represents worst group.

ColoredMNIST Waterbirds
Data Model in acc test acc in acc wg acc
DG Probing 0.852 0.093 0.885 0.781

IRM DG Probing 0.799 0.118 0.838 0.707
REx DG Probing 0.797 0.121 0.891 0.617
GroupDRO DG Probing 0.798 0.127 0.906 0.684
Fish DG Probing 0.798 0.118 0.900 0.744
SWAD DG Probing 0.800 0.113
LISA DG Probing 0.705 0.904 0.722
MatchDG 1NN CNN 0.698 0.361 0.970 0.080
MatchDG 1NN Finetune 0.850 0.181 0.920 0.112
MatchDG random Probing 0.799 0.120 0.793 0.009
MatchDG 1NN Probing 0.789 0.217 0.886 0.411

MatchDG clean Probing 0.793 0.181 0.906 0.536

NCM random Probing 0.794 0.176 0.804 0.269
NCM 1NN Probing 0.736 0.649 0.892 0.521
NCM clean Probing 0.740
random guess 0.500 0.500 - -

0.735 0.730 - -
theory oracle 0.750 0.750 - -

ERM (CLIP

ERM oracle

- -
0.000

0.693 0.864 0.812

Synthetic Experiments. The results indicate that (a)
oracle accuracy: NCM (3) achieves oracle-level accu-
racy under small noise of CF pairs (ε = 0, 1), as if the
model were trained directly on the test domain (see Fig-
ure 2a). (b) Few-shot CF pairs: we observe that only
k = I(FE) = 20 oracle CF pairs are required to cor-
rectly identify the spurious space, achieving the best pos-
sible performance. When the noise is small (ε = 1), the
performance remains optimal. However, as the noise be-
come larger (ε = 5, 10), the performance degrades, as
predicted by Theorem 1. (c) Trade-off effect of r: we fix
the number of noisy CF pairs as k = 100 and evaluate
the effect of varying the subspace rank r on test accuracy
(see Figure 2b) under different noises. For small noise
levels (ε = 0, 1), we observe monotonically decreasing
in-domain test accuracy and the arch shape test accuracy
curves (cf. Theorem 1 (ii)), showing the trade-off effect
of r. The best performance achieves when r ≈ I(FE).
In this case of large noise (ε = 5, 10), the noise makes
truncated SVD decomposition more prone to preserving
some spurious features while removing some invariant
features, so a slightly aggressive selection of r yields
better results.

Real-world Dataset. We present the results of NCM
(3) on two representative real-world datasets. ColoredM-
NIST [Arjovsky et al., 2019] is a semi-synthetic dataset,
but is widely recognized as difficult due to strong accu-
racy on the inverse line effect [Gulrajani and Lopez-Paz,
2021, Salaudeen et al., 2024]. Waterbirds-CF is a highly
imbalanced dataset, where the minority group consists of only 240 samples. We construct CF pairs by matching these
with 240 randomly selected samples from the majority group of original (See Section D.1 for detail). This dataset is
used to highlight the robustness of our method in this domain-imbalance scenario.

We summarize our results in Table 1 and give more detailed tables in the appendix. On ColoredMNIST result, our
result shows that NCM probing on CLIP pretrained model (3) performs well on both in-domain and oracle-validation
(cf. Table 3), achieving test domain accuracies of 69.3% and 71.4%, respectively, nearly matching the ERM oracle
accuracy of 73%, demonstrating the effectiveness of NCM (3). The performance difference between two validation
methods are only 2%, indicating that NCM (3) is less sensitive to hyperparameter tuning. This stands in sharp contrast
to other algorithms such as ERM, IRM, GroupDRO, Fish, and REx, which only achieve around 10% accuracy with
in-domain validation and 20%-66% with oracle validation except for LISA which achieves 69.3% on both validation
methods. Our results show that NCM (3) with noisy CF pairs achieves 81.2% worst-group accuracy, outperforming
the best baseline (ERM) by 3.1% using in-domain validation. In contrast, all other methods underperform ERM. We
further include the oracle validation and other baseline methods with CLIP on oracle validation. It also achieves 86%
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accuracy using oracle validation (see Table 4), outperforming the best probing method on CLIP by 3.3%. We further
include finetuning MatchDG with iterative matching as well as the ResNet50 end-to-end training for comparison with
iterative matching. Due to the non-linear backbone and the existence of noises, the MSE constraint cannot effectively
find the correct invariant subspace thus suffers from the suboptimal results. Our observation are as follows: First, NCM
(3) consistently outperforms all baselines across these datasets. Second Random pairing and 1 Nearest Neighbor (1NN)
pairing perform well on ColoredMNIST, but fail on Waterbirds. On ColoredMNIST, invariant features are inherently
similar across samples, allowing even random pairing to produce reasonable noisy CF pairs. In contrast, Waterbirds
exhibit greater variability in the features making it difficult for 1NN to find meaningful counterfactual matches.

6 Related Works

Data augmentation and generation: Data augmentations can be seen as simple-to-generate counterfactual pairs, where
the augmentations implicitly encode knowledge about desired invariances. For example, standard functions like rota-
tion, scaling, and noise addition suggest that such transformations should not alter the predicted class [Honarvar Nazari
and Kovashka, 2020, Shorten and Khoshgoftaar, 2019]. More sophisticated strategies follow this principle; LISA, for
instance, is a Mixup-inspired method that learns domain-invariant predictors through intra-label and intra-domain
mixing to encourage the model to respect class boundaries [Yao et al., 2024].

Another line of research uses generative models to inflate training data. DIRT [Nguyen et al., 2021] suggests using
StarGAN [Choi et al., 2018] to generate paired samples, while other work has used ComboGAN [Anoosheh et al.,
2018] to generate new data [Rahman et al., 2019]. From our perspective, these generated samples can be seen as
complex, class-preserving data augmentations to estimate pairs regarding some type of invariances. Our work provides
a causal language and theoretical guarantee for this approach.

Distribution or sample matching in addressing spurious correlations: Invariant Risk Minimization (IRM) [Arjovsky
et al., 2019] aim to mitigate spurious correlations by learning domain-invariant representations. Despite their theo-
retical appeal, IRM-based approaches often under perform in practice, prompting several works to analyze and refine
them [Rosenfeld et al., 2020, Krueger et al., 2021, Ahuja et al., 2022]. Beyond distribution matching, MatchDG [Ma-
hajan et al., 2021] introduces an iterative sample-level matching objective that aligns representations across domains
in latent space. Our method similarly employs sample-wise matching but crucially, we provide a theoretical guarantee
and deeper exploration on the properties of these pairs required to achieve robustness.

MatchDG [Mahajan et al., 2021] and DIRT [Nguyen et al., 2021], which adopt a similar idea to address the simple
setting: oracle counterfactual pairs. Their objectives can be viewed as Lagrangian formulations of the simple CF
matching (1). However, these approaches lack theoretical analysis and do not explicitly identify the necessary prop-
erties that the data pairs must satisfy to ensure robustness. Furthermore, their methods fail when the data pairs are
approximate or noisy, which are precisely the conditions encountered in practical scenarios, such as those in Level 1
and Level 2 (cf. Section 3).

Causal inference seeking invariant predictor for robustness: The goal of domain generalization in a causal perspective
is to find a representation Φ of x such that y ⊥ e|Φ(x). Different approach to induce Φ has been heavily explored.
Most of the causal inference type of work focusing on observable causal variables Magliacane et al. [2018] proposes
to find subset of causal variable Φ(x) in x, where x is the set of observable causal variables and Φ(x) ⊂ x, such that
y ⊥ e|Φ(x) holds. Subbaswamy et al. [2019] considers the graph surgery estimator that finding the stable estimator
by removing unstable mechanism from the joint factorization.

If the causal variables are not directly observable, it is much harder to apply causal inference. Due to the observable
variable x forms a collider to all the causal variables, making it nearly impossible to find the robust classifier. Despite
the challenges, there are plenty of attempts in the literature. Arjovsky et al. [2019] proposes an bi-level objective to find
Φ(x) such that a shared classifier w could be optimal on all the training environments. There are other constraint or
regularization based approaches trying to find Φ(x) by minimizing some discrepancy or variance between the training
environments [Li et al., 2018a, Sun and Saenko, 2016, Shi et al., 2021, Rame et al., 2022, Mukhoti et al., 2020].

7 Conclusion and Discussion

We address spurious correlations from a data-centric view, showing that introducing (noisy) counterfactual pairs during
training improves model robustness. This mirrors classical supervised learning, where labels guide models toward
target concepts without formal definitions; similarly, invariant pairs implicitly identify and mitigate spurious features.
One challenge of our method is obtaining counterfactual pairs. While straightforward in tasks like object classification
(e.g., using image editing for spurious features, as shown in the Waterbirds dataset), it is more complex in fields
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like medical imaging, requiring expert involvement. However, experts can now help by creating or validating a few
high-quality counterfactuals to improve robustness suggested by our findings.
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Appendix

The code is available at https://anonymous.4open.science/r/NCM-A35E.

The Use of Large Language Models (LLMs)

In the preparation of this manuscript, authors utilized the Large Language Model (LLM) to assist in two capacities:
for brainstorming initial conceptual approaches to theoretical proofs and for refining the text for grammatical accuracy
and clarity. The authors are fully responsible for all substantive content and the final scientific conclusions.

A Expanded Explanation

In this section, we include additional discussions about the causal model, assumptions, data availability, etc.

A.1 Expanded explanation of Latent Causal Model

observable features
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latent spurious featureslatent invariant features

z2

z4

z3

caused by y

confounding 

with y

e

z1

x

Figure 3: Illustration of the latent causal model. The an-
cestors of the target y are z1, z2, which are assumed to
be invariant across domains (see Assumption 1). On the
other hand, z3, z4 are spurious features. To be specific, z3
is confounded with y, and z4 is descendant of y. Because
they are not ancestors of y, thus they are spurious.
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Figure 4: An illustration of oracle counterfactual pairs
represented by our model, where f1 and f2 are two SCMs’
solution function for domain 1 and domain 2, gx is the
observation function from z to x. In this figure, we do not
plot the prediction target y and correspondingly gy.

Figure 3 is an illustration of the proposed latent causal model, which satisfies the conditions in Definition 4 and
Assumption 1. We first note that this is a fairly common assumption in the field (e.g., Rosenfeld et al. [2020], Arjovsky
et al. [2019]. We also suggest that this is not a significant limitation. Suppose we had a graph where directly causes,
i.e., y = gy(uy, x, zPa(y)). We could then create a new graph with a new latent node equal to x, i.e., zx = x and change
gx(z1, z2, . . . , zx, . . . , ) = zx = x but now gy would only depend on latent variables. Thus, because we already deal
with complex latent variables, this is a not a limitation but more syntactic.

The domain counterfactuals encode crucial information about the underlying data generation mechanisms and help
avoid reliance on features that are spuriously correlated with labels in the training dataset. Oracle counterfactual pairs
are samples living in two different causal worlds that shares the same exogenous noise. In the example of Figure 4,
two Aladdin images are oracle counterfactual pairs where the intervention variable is “wealth" represented by some
latent variable zi. gx encodes the causal information to images.

From a causal perspective, the key of robustness to spurious correlation is getting independence of y and e given some
conditioning statements. If the causal z variables are observable, then one could use a d-separation criteria to realize
that z1, z2 and z3 is a d-separating set for e and y as in Figure 5a. In this simplified scenario, conditioning on z4
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(a) With known causal fes, we have a robust predictor
y ⊥ e|z1, z2, z3. Yet, because of the graph, we know
p(y|z1, z2, z3) = p(y|z1, z2). This suggests that including z3
is safe but the optimal predictor will be constant to z3 due to the
conditional independence, thus does not violate our lemma.
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(b) With known causal variables, we have y ̸⊥ e|z2, z4. Thus,
using z4 is not robust, which is the same as previous results.
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(c) For spurious correlation, we have y ⊥ e, but because we
condition on the collider x, we have y ̸⊥ e|x, leading to non-
robust predictor. Even when we further hypothetically condition
on any subset of the latent variables z′ ⊂ {z1, z2, z3, z4}, we
still have y ̸⊥ e|z′, i.e., a non-robust predictor..
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(d) Our proposed method can be seen as post-processing inter-
vention ϕ on x = g(ux, z1, z2, z3, z4) such that x′ := ϕ(x) =
ϕ(g(ux, z1, z2, z3, z4)) = g′(ux, z1, z2) for some g′ that only
depends on ux and z1. The post-processing function ϕ can be
seen as forming a new intervened SCM with certain incoming
edges removed. Invariant pairs provide additional signal to find
such ϕ. In the linear case, we simply project out the spurious
feature by truncated SVD.

Figure 5: Illustration of robustness prediction corresponding to non-latent and latent causal variables.

would not be robust as illustrated in Figure 5b. However, when conditioning on x, y and e are dependent because of
the collider effect of x and that z4 is a descendant of y as illustrated in Figure 5c. Our method is able to overcome this
limitation by being viewed as a postprocessing intervention on x that removes the edges from the spurious features to
x. This enables e and y to be independent. From this perspective, our approach learns this postprocessing function ϕ
based on counterfactual pairs.

A.2 Availability of invariant pairs

14
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Table 2: An illustrative taxonomy of scenarios from ex-
plicit knowledge to no knowledge of spurious correlations.

knowledge on spurious features pair data acquisition
level 3 explicit knowledge model constraint
level 2 soft expert knowledge sample editing
level 1 implicit assumed CF pair collection
level 0 no knowledge -

While invariant pairs can be hard to acquire, we argue
that it is feasible and practical to obtain in certain sce-
narios.

For certain applications, obtaining such CF pairs are
both possible and effective. Table 2 from the introduc-
tion summarizes a range of cases where there could be
enough implicit knowledge of spurious correlations to
collect them. We further outline these levels in detail
below.

Level 3 - Explicit knowledge: In some scientific settings, spurious correlations can be coded as an explicit and math-
ematical modeling constraint. For example, SchNet [Schütt et al., 2018] builds molecule symmetries and invariance
directly into the model structure. This case is straightforward but does not hold in general, so we do not consider it in
our work.

Level 2 - Domain expert “soft” knowledge of spurious features: In some applications, domain experts can articulate
which features are irrelevant, even if they cannot encode this knowledge as model constraints. For example, an x-ray
technician knows that certain medical equipments should not affect their diagnosis of cancer or not [Zech et al., 2018,
Oakden-Rayner et al., 2020]. In this case, CF pairs can be either manually curated (via image editing or generative
models) or collected (e.g., by obtaining paired x-rays with and without fluid lines). Simple image augmentation
techniques like rotations, flips or color distortions may also fall under this category as they implicitly encode spurious
features that are assumed to not affect the downstream tasks (like ColoredMNIST experiment (cf. Section 5)).

Level 1 - Implicit knowledge: At this level, the only differences between domains are assumed to be spurious features
because of application-specific knowledge, but domain experts may not know the spurious features a priori. As one
example, the differences between data coming from two similar microscopes can be assumed to be spurious since the
measurement effects should not affect the underlying physical phenomena of interest. In this case, it is feasible to
collect a small number of counterfactual pairs by measuring a small number of samples with both microscopes.

Level 0 - No knowledge: Without any hints or assumptions about spurious features as in levels 1-3, making a model
robust to spurious features is likely infeasible. To illustrate, consider a simple causal structure without any knowledge
on (latent) spurious features: z1 → y→ z2 where only z1 is invariant. Without any knowledge, there is no information
to distinguish between invariant feature z1 and spurious feature z2. Moreover, if z2 is more strongly correlated to y or
related to y that is easier to extract from inputs x, models are prone to shortcut learning [Hermann et al., 2024], the
model prediction will rely heavily or nearly solely on z2.

We specifically target the hard and feasible levels 1 and 2, and suggest that in certain cases these pairs could feasibly
be collected or created either via manual editing or generative AI tools [Rombach et al., 2022, Betker et al., 2023]. It
seems that our method requires additional domain knowledge compared to the standard DG setting. We claim this is
an alternative form of domain knowledge, as the standard DG setting also requires domain knowledge, as it is encoded
in the multi-domain data collection (see Section A.4 for further explanation). Noticing that this CF pairs acquisition
are still costly, so we ask: if we have k estimated CF pairs with noise ε, what kind of robustness guarantee can we get?

A.3 Discussion on Sample Complexity

We wanted to further clarify the difference between the data requirements of IRM and NCM by considering the data
scaling requirements for a certain number of intervened/spurious features, i.e., |I(FE)|. For this comparison, we will
assume an theoretically ideal setting with an infinite number of samples for each domain, but a finite number of perfect
counterfactual pairs, where the true data-generating process is compatible with logistic loss.

IRM [Arjovsky et al., 2019]: As proven in a prior study [Rosenfeld et al., 2020, Corollary 5.2], achieving optimal
invariant predictors with IRM requires the number of training domains e to be greater than the number of spurious
feature dimensions, i.e., e > |I(FE)|. And this requirement is true even if there is an infinite number of samples in
each of the domains.

Noisy Counterfactual Matching (NCM): Our method, NCM, requires the number of linear independent invariant pairs,
k, to be greater than the spurious feature dimension to achieve optimal invariant predictors, as shown in our paper’s
Corollary 4, i.e., k ≥ |I(FE)|. Linear independence could be satisfied if we assume full rank exogenous noise and
soft intervention across domains, which are both common assumptions that are easy to satisfy.
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It is important to note that the data-generating process for IRM is a special case of the structural causal model (SCM)
that our NCM uses. (Specifically, while IRM does not account for the ancestors of the target variable e, it does permit
some descendants of y to be unintervened, which are safe features for prediction based on d-separation.)

This distinction of the data requirement has significant practical implications, particularly in high-dimensional appli-
cations where the spurious feature dimension could be large: IRM would require the number of domains e to scale
with the spurious feature dimension, which may be infeasible or too costly in practice (e.g., x-ray machine example).
Our NCM, on the other hand, only requires the number of counterfactual pairs k to scale with the spurious feature
dimension, which may be significantly more feasible (e.g., x-ray machine example).

A.4 Discussion of Implicit Domain Knowledge Requirement

Nearly all methods require domain knowledge to some extends. For instance, IRM implicitly uses expert’s knowledge
based on the specification of the domain labels. In IRM, domain labels are by definition the way of specifying what
the predictions should be invariant to. Another example of using expert knowledge is data augmentations (See section
6 in our paper). While it seems that data augmentations don’t use any domain knowledge, they actually implicitly use
the domain knowledge that "the predictions should not change under this augmentation" (e.g., small rotations or color
distortions). While not explicit, these data setups actually incorporate domain knowledge. As a concrete example,
take the Rotated MNIST dataset. If the goal is to predict the digit, then rotation can be a domain label. However, if
the goal is to predict the rotation, then the digit can be a domain label. Thus, knowledge about the task and what is
irrelevant is key for even defining what parts of the data can be considered domain labels. We argue that the expert
knowledge required for validating or creating domain counterfactuals is similar in spirit to the expert knowledge for
defining domain labels or data augmentations. They are implicit ways of incorporating expert knowledge.

While our data setup differs from standard domain generalization tasks, we argue that expert knowledge is not required
to employ the learning algorithm itself, but rather to construct the appropriate dataset. One approach is to use standard
domain generalization methods like IRM, which require labeled data from multiple domains. In contrast, we present
an alternative approach that requires only possibly noisy invariant pairs and labeled data from a single domain. Note
that in our setting, the invariant pairs do not need to be labeled (for example, different x rays of the same patient even
if the diagnosis is unknown). In all cases, whether using domain labels as in IRM, data augmentation as in LISA, or
counterfactual pairing as in NCM, our algorithms can be generically applied given the appropriate data constructed
through expert knowledge.

B Practical Algorithm

Algorithmically, to ensure the learned model θ orthogonal to the spurious feature subspace estimated by r-truncated
SVD decomposition of the noisy CF pairs, we consider reparameterization approach that projects the samples x onto
the orthogonal complement of Q̃r (i.e., I− Q̃rQ̃

⊤
r ) and then trains an unconstrained classifier (See Algorithm 1). This

ensures the classifier only use the invariant component of x to predict y. This approach processes the data using the CF
pairs before optimization, thus allows simple optimization approach. Other algorithm like projected gradient descent
method could also be used here, and we expect it would have similar results, but we do not explore it further.

Algorithm 1 Noisy Counterfactual-Matching

Input: Training Dataset Dtrain; pair difference matrix ∆̃x ∈ Rd×k; truncated SVD size r; epochs T ; step size η; batch
size B.

// Phase I: Find projection matrix to remove estimated spurious subspace Q̃r.
Q̃r, Σ̃r, Ṽ

⊤
r = TruncatedSVD(∆̃x, r)

P = I − Q̃rQ̃
⊤
r

// Phase II: Gradient descent with preprocessing.
for t = 1, 2, . . . , T do

for sample mini-batch {(xi,yi)}Bi=1 ⊂ Dtrain do
θ ← θ − η∇ 1

B

∑B
i=1 ℓ(h(Pxi; θ),yi),

end for
end for

Output θ

16



From Invariant Representations to Invariant Data A PREPRINT

C Proofs

C.1 Proof of Proposition 1

The proof is based on the idea that the optimally robust classifier cannot vary w.r.t. the non-ancestors of y. Intuitively,
if it does, then there exists an (adversarial) environment that can make the objective high. Given this invariance of the
optimally robust predictor, it is simple to see that counterfactuals are indeed invariant pairs. For theoretic clarity, we
will present the lemma that the optimally robust predictor is invariant to non-ancestors of y. Then, we will prove the
proposition given this lemma and finally give the proof of the lemma.

For simplicity of notation in this section, we will let z1 := zAnc(y) denote the latent z variables that are ancestors of y
and let z2,e := zZ\Anc(y),e denote variables that are not ancestors. Note that z2,e depends on the environment e but z1
does not depend on e by our spurious correlation latent SCM class assumption (cf. Assumption 1).
Lemma 1 (Optimally Robust Predictor is Invariant to Non-Ancestors). Any optimally robust predictor for a spurious
correlation latent SCM class must be constant w.r.t. the non-ancestors of y almost everywhere, i.e., for almost all ux

and z1, there exists a constant cux,z1
w.r.t. z2,e such that h∗

E(gx(ux, z1, z2,e)) = cux,z1
almost everywhere.

Proposition 1 (Spurious Counterfactuals are Invariant Pairs). Given a spurious correlation latent SCM classME and
a strictly convex loss function ℓ, any observed counterfactual pair (xe,xe′) betweenMe ∈ME andMe′ ∈ME will
be an invariant pair w.r.t. the optimally robust classifier h∗

E based on ℓ induced by the domain distributions {Pe}e∈E
almost surely, i.e., h∗

E(xe) = h∗
E(xe′).

Proof of Proposition 1. By the definition of spurious counterfactual pairs, we know that xe and xe′ must come from
the same exogenous noise u. And because we assume that no causal mechanism for ancestors is intervened, this means
that there exists (ux, z1, z2,e, z2,e′) such that gx(ux, z1, z2,e) = x and gx(ux, z1, z2,e′) = x′. Because of Lemma 1,
we know that the optimally robust predictor h∗

E must be invariant to changes in z2,e values. Therefore, we have:

h∗
E(x) = h∗

E(gx(ux, z1, z2,e)) = h∗
E(gx(ux, z1, z2,e′)) = h∗

E(x
′), (5)

where the second equality is by Lemma 1 and the others are by definition of a spurious counterfactual.

Proof of Lemma 1. We step through a few key steps of the proof.

Handling non-injective gx First, we show that if gx is non-injective w.r.t. the support of the original distribution Pe,
it can be written as an injective function of the support of another distribution P̃e, which will have the same objective
value as when using Pe. First, let g†x(x) denote one pseudo inverse of gx (note there could be many but we only need
one here). Then, we can define the new distribution to be equal to Pe except for the following:

P̃e(ux, z1, z2) =

{
Pe(x = x), if ∃x such that (ux, z1, z2) = g†x(x)

0, otherwise
. (6)

We now show that this is equivalent to the objective using Pe:

E(x,y)∼Pe
[ℓ(h(x), y)] = EPe(x)[EPe(y|x)[ℓ(h(x), y)]] (7)

= EP̃e(ux,z1,z2)
[EPe(y|x)[ℓ(h(gx(ux, z1, z2), y)]] (8)

= EP̃e(x)
[EPe(y|x)[ℓ(h(x, y)]] (9)

= EP̃e(x,y)[ℓ(h(x, y)] , (10)

where the second two equals are by LOTUS rules. Thus, the rest of the proof can assume that gx is injective w.r.t. the
support of P̃e.

Decomposition into independent optimization problems Second, we show that the global min-max optimization
problem can be decomposed into local min-max problems given a particular (ux, z1):

min
h

max
e∈E

E(x,y)∼P̃e
[ℓ(h(x), y)] (11)

= min
h

max
fe:e∈E

Eux,uy,z1,u2 [ℓ(h(gx(ux, z1, fe(u2, z1))), gy(uy, z1))] (12)

= min
k

max
fe:e∈E

Eux,uy,z1,u2 [ℓ(k(ux, z1, fe(u2, z1)), gy(uy, z1))] (13)

= Eux,z1

[
min

k(z2|ux,z1)
max

fe(u2|z1)
Euy,u2|ux,z1

[ℓ(k(ux, z1, fe(u2, z1)), gy(uy, z1))]

]
, (14)
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the last step is because k is injective due to gx being injective on p̃ so we can freely and independently choose
predictions for each value of ux and z1 in the support of p̃. Similarly, fe can independently and freely choose values
for each value of z1 (it is already constant w.r.t. ux.

Proving minimax solutions to independent problems are constant w.r.t. z2 We will now suppress notation on
ux and z1 and simply denote k(z2) and f(u2). Furthermore, we will denote ϕ(α) := Euy,u2|ux,z1

[ℓ(α, gy(uy, z1))].
Given this simplified notation, we will show that for each of these subproblems, the optimal solution to the following
problem for k is constant w.r.t. z2 = fe(u2):

min
k

max
fe

Eu2 [ϕ(k(fe(u2)))] . (15)

Environment strategy: The environment’s optimal strategy is to concentrate all the mass on the worst case prediction:
max
fe

Eu2
[ϕ(k(fe(u2)))] = sup

z2

ϕ(k(z2)) . (16)

The proof of this can be seen by contradiction. If fe was optimal but varied w.r.t. u2, then there exists at least two
measurable subsets that have different outputs. We could construct another predictor f ′

e by changing all the predictions
to the supremum which would increase the objective, which leads to a contradiction.

Predictor’s strategy: Now we can analyze the predictor’s optimal strategy given this simplification and show that the
optimal strategy is constant w.r.t. z2:

k∗(z2) := argmin
k

sup
z2

ϕ(k(z2)) = argmin
k

J(k) = c . (17)

Again, the proof is by contradiction. Suppose there was a k that was optimal but was not constant. Then, we can
construct a new k′ that will have a strictly better value: k′(z2) := c = argmin α ϕ(α) that is a constant, where
α is optimized over the set of possible outputs of k. Because there must exist at least two distinct outputs of k by
assumption, then we can analyze the relation between the objectives achieved for k and k′:

J(k) = sup
z2

ϕ(k(z2)) = sup
α

ϕ(α) > min
α

ϕ(α) = ϕ(c) = sup
z2

ϕ(c) = sup
z2

ϕ(k′(z2)) = J(k′) , (18)

where the strict inequality is because k was assumed to be non-constant. This leads to the contradiction that k was
optimal for the minimax problem. Thus, k∗ must be a constant w.r.t. z2 as stated before. This completes the proof
when combining over all values of ux and z1 in the support of P̃.

The optimally robust classifier h∗
E is defined as the solution to:

h∗
E = argmin

h
J(h) = argmin

h
max
e∈E

E(x,y)∼Pe
[ℓ(h(x),y)],

where ℓ is a strictly convex loss function. Using latent variables, and letting k(ux, z1, z2,e) := h(gx(ux, z1, z2,e)),
the objective function can be expressed as:

J(h) = Eux,z1

[
max
e∈E

Euy

[
Ez2,e∼Pe(·|ux,z1)[ℓ(k(ux, z1, z2,e), gy(uy, z1))]

]]
.

The outer expectation Eux,z1 is taken because the random variables ux and z1 (ancestors of y, z1 = zAnc(y)) are not
affected by the choice of environment e ∈ E . The term z2,e denotes latent random variables that are non-ancestors of
y, whose causal mechanisms fe,i (and thus their distribution Pe(z2,e|ux, z1) conditioned on realizations ux, z1) can
vary with e. The function gy(uy, z1) (target generation from realization uy, z1) is also invariant across environments.

To minimize J(h), we need to effectively minimize the term inside the Eux,z1
[·] for each pair of realizations (ux, z1)

independently. Let’s fix (ux, z1). Define:
ϕux,z1

(α) := Euy
[ℓ(α, gy(uy, z1))].

Since ℓ is strictly convex, ϕux,z1
(α) is also strictly convex. Let cux,z1

be the unique minimizer of ϕux,z1
(α):

cux,z1
:= argmin

α
ϕux,z1

(α).

This cux,z1
represents the optimal prediction given realizations (ux, z1), averaging out uy , and it is independent of

the realization z2,e and environment e.

For fixed realizations (ux, z1), the problem for the predictor h (which chooses k(ux, z1, ·) as a function of z2,e) and
the environment e is to determine:

M(k;ux, z1) = max
e∈E

[
Ez2,e∼Pe(·|ux,z1)[ϕux,z1

(k(ux, z1, z2,e))]
]
.

The predictor h chooses its function k(ux, z1, ·) (which maps a realization z2,e to a prediction value) to minimize
M(k;ux, z1).
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1. Environment’s Strategy: For any function k(ux, z1, ·) chosen by h, the environment e will choose the
distribution Pe(z2,e|ux, z1) to maximize Ez2,e [ϕux,z1(k(ux, z1, z2,e))]. Assuming the class of SCMsME
allows the environment to concentrate probability mass, this maximum will be:

sup
z′
2,e

ϕux,z1
(k(ux, z1, z

′
2,e)).

This is because the environment can choose Pe(z2,e|ux, z1) to be a point mass (or a sequence of distributions
approaching a point mass) at the realization z′

2,e that yields the highest value for ϕux,z1
(k(ux, z1, z

′
2,e)).

2. Predictor’s Optimal Strategy (Construction): The predictor h must choose its function k(ux, z1, ·) to
minimize this supremum value:

min
k(ux,z1,·)

(
sup
z′
2,e

ϕux,z1
(k(ux, z1, z

′
2,e))

)
.

To minimize the supremum (i.e., the worst-case value over realizations z′
2,e) of ϕux,z1

(k(ux, z1, z
′
2,e)), the

optimal strategy for k(ux, z1, ·) is to make its output constant with respect to z′
2,e. Let this constant be

Cux,z1
. Then the expression becomes ϕux,z1

(Cux,z1
). The predictor will then choose this constant Cux,z1

to be cux,z1
= argminαϕux,z1

(α), because this value minimizes ϕux,z1
(·).

Thus, the constructed optimal strategy for k(ux, z1, ·) is k(ux, z1, z2,e) = cux,z1
for all realizations z2,e.

3. Value Achieved by the Optimal Strategy: With k(ux, z1, z2,e) = cux,z1
, the value M(k;ux, z1) becomes

ϕux,z1(cux,z1). If k(ux, z1, z2,e) were any other function (i.e., not constant and equal to cux,z1 for all
realizations z2,e), then there would exist some realization z′′

2,e such that k(ux, z1, z
′′
2,e) ̸= cux,z1 . Let v′′ =

k(ux, z1, z
′′
2,e). Then ϕux,z1(v

′′) > ϕux,z1(cux,z1) due to the strict convexity of ϕux,z1 and cux,z1 being
its unique minimizer. The adversarial environment would ensure that supz′

2,e
ϕux,z1

(k(ux, z1, z
′
2,e)) ≥

ϕux,z1
(v′′) > ϕux,z1

(cux,z1
). Thus, any strategy other than k(ux, z1, z2,e) = cux,z1

results in a strictly
larger value for M(k;ux, z1).

The overall objective J(h) is Eux,z1
[M(k;ux, z1)]. Since the optimal strategy for each pair of realizations (ux, z1)

is to set k(ux, z1, z2,e) = cux,z1
, the optimally robust predictor h∗

E must be such that its corresponding k-function
implements this strategy. Therefore, by construction of the optimal strategy for the minimax problem, it must be that:

h∗
E(gx(ux, z1, z2,e)) = cux,z1

almost everywhere.

This shows that h∗
E(gx(ux, z1, z2,e)) is constant with respect to the realization z2,e and equal to cux,z1 .

C.2 Perturbation Theory

In this subsection, we revisit some important notions in the matrix perturbation theory. Let ∆x and ∆̃x = ∆x + ε be
two matrices in Rd×k, without loss of generality, assume d ≥ k, as d denotes the dimension of x and k denote the
counterfactual pair. Their SVDs are given respectively as follows.

∆x =

k∑
i=1

σiqi(vi)
⊤ = [Qj Q⊥,j ]

[
Σ 0
0 Σ⊥
0 0

] [
V ⊤
j

V ⊤
⊥,j

]
,

∆̃x =

k∑
i=1

σ̃iq̃iṽ
⊤
i =

[
Q̃j Q̃⊥,j

] Σ̃ 0
0 Σ̃⊥
0 0

[ Ṽ ⊤
j

Ṽ ⊤
⊥,j

]
.

Here, σ̃1 ≥ · · · ≥ σ̃k (resp. σ1 ≥ · · · ≥ σk) are the singular values of ∆̃x (resp. ∆x) in descending order. ũi (resp.
ui) is the left singular vector corresponding to σ̃i (resp. σi), and vi (resp. vi) is the right singular vector. Define:

Σ̃ := diag([σ̃1, . . . , σ̃j ]), Σ̃⊥ := diag([σ̃j+1, . . . , σ̃k]), (19)

Q̃j := [q̃1, . . . , q̃j ] ∈ Rd×j , Q̃⊥ := [q̃j+1, . . . , q̃d] ∈ Rd×(d−j),

Ṽ := [ṽ1, . . . , ṽj ] ∈ Rk×j , Ṽ⊥ := [ṽj+1, . . . , ṽk] ∈ Rk×(k−j).

The matrices Σ,Σ⊥, Q,Q⊥, V, V⊥ are defined analogously.

Wedin [1972] developed a perturbation bound for singular subspaces that parallels the Davis-Kahan sinΘ theorem for
eigenspaces. The Lemma below provides bounds on the perturbation of the left and right singular subspaces.
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Lemma 2 (Wedin’s sinΘ theorem). Consider the setup in Section C.2. If σ1(ε) < (1− 1/
√
2)(σj − σj+1), then

max
{
dist(Q̃j , Qj), dist(Ṽj , Vj)

}
≤ 2∥ε∥

σj − σj+1
,

max
{
distF (Q̃j , Qj), distF (Ṽj , Vj)

}
≤ 2

√
j∥ε∥

σj − σj+1
.

C.3 Proof of Theorem 1

We will prove the result for linear regression as it is the simplest to understand. Then, we will prove for logistic
regression. And finally, we will prove the extra bound on the spurious misalignment term.

Proof for linear regression part of Theorem 1. Notice that by Assumption 1, we have ye = ye′ , ∀e, e′, i.e., the envi-
ronment does not affect the target values so we can write this as y. Therefore, we first decompose the objective by
inflating by the counterfactuals xe+→e:

Ep(xe+ )[ℓ(θ
⊤xe+ , ye+)]

=
∑

e∈Etrain
P(e)Ep(xe+ ,xe+→e)

[∥θ⊤(xe+ + xe+→e − xe+→e)− y∥22]

=
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ + xe+→e − xe+→e)− y∥22]

≤
∑

e∈Etrain
P(e)(2Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2Eu[∥θ⊤xe+→e − y∥22])

= 2
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2

∑
e∈Etrain

P(e)Ep(xe,y)[∥θ
⊤xe − y∥22]

= 2
∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22 + 2E(x,y)∼Ptrain

[∥θ⊤x− y∥22],
where xe+→e follows the training domain distribution p(xe) and (xe+ ,xe+→e) is a conceptual counterfactual pair.
Notice the second term is the training loss. Furthermore, we note that:∑

e∈Etrain
P(e)Eu[∥θ⊤(xe+ − xe+→e)∥22]

= θ⊤
∑

e∈Etrain
P(e)Eu[(xe+ − xe+→e)(xe+ − xe+→e)

⊤]θ

= θ⊤Me+,Etrain
θ .

Given this, we can simplify this term based on the NCM constraint as follows:

θ⊤Me+,Etrain
θ

(3)
= θ⊤(I − Q̃rQ̃

⊤
r )Me+,Etrain

(I − Q̃rQ̃
⊤
r )

⊤θ

(a)
= θ⊤(I − Q̃rQ̃

⊤
r )Q|I(FE)|Λ|I(FE)|Q

⊤
|I(FE)|(I − Q̃rQ̃

⊤
r )

⊤θ

=

∥∥∥∥θ⊤ Q̃r,⊥︸︷︷︸
Rd×(d−r)

Q̃⊤
r,⊥︸︷︷︸

R(d−r)×d

Q|I(FE)|︸ ︷︷ ︸
Rd×|I(FE )|

√
Λ|I(FE)|

∥∥∥∥2

=

∥∥∥∥θ⊤Q̃r,⊥Q̃
⊤
r,⊥Q|I(FE)|

√
Λ|I(FE)|

∥∥∥∥2
(b)
=

∥∥∥∥θ⊤Q̃r,⊥Q̃
⊤
r,⊥Q|I(FE)|

∥∥∥∥2
Λ|I(FE )|

= ∥θ∥2
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥2
Λ|I(FE )|

,

where in (a), we use eigendecomposition of Me+,Etrain
which Q|I(FE)| ∈ Rd×|I(FE)|, and Λ|I(FE)| ∈ R|I(FE)|×|I(FE)|

are corresponding eigenvectors and eigenvalues diagonal matrix and in (b), we used the definition of Mahalanobis-
induced spectral norm.

Proof for logistic regression part of Theorem 1. For logistic regression where y ∈ {−1, 1}, we have a similar decom-
position as in linear regression. First, we note that the log loss has a Lipschitz constant of 1 and thus we have the
following:

|ℓ(θ⊤x, y)− ℓ(θ⊤x′, y)| ≤ ∥θ⊤x− θ⊤x′∥ = ∥θ⊤(x− x′)∥ (20)

⇔ ℓ(θ⊤x, y) ≤ ℓ(θ⊤x′, y) + ∥θ⊤(x− x′)∥ . (21)
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Given this we can easily get our initial result:

Exe+ ,ye+ [ℓ(θ
⊤xe+ , ye+)] (22)

≤
∑

e∈Etrain
P(e)E[ℓ(θ⊤xe+→e, y) + ∥θ⊤(xe+ − xe+→e)∥] (23)

=
∑

e∈Etrain
P(e)E[ℓ(θ⊤xe, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] (24)

= E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] , (25)

where we use the fact that xe+→e has the same distribution as xe. Now we bound the second term as follows:∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] (26)

=
∑

e∈Etrain
P(e)E[

√
∥θ⊤(xe+ − xe+→e)∥2] (27)

≤
√∑

e∈Etrain
P(e)E[∥θ⊤(xe+ − xe+→e)∥2] (28)

=
√

θ⊤
(∑

e∈Etrain
P(e)E[(xe+ − xe+→e)(xe+ − xe+→e)⊤]

)
θ (29)

=
√
θ⊤Me+,Etrain

θ (30)

≤
√
∥θ∥2

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥2
Λ|I(FE )|

(31)

= ∥θ∥
∥∥Q̃⊤

r,⊥Q|I(FE)|
∥∥
Λ|I(FE )|

, (32)

where (28) is by Jensen’s inequality and (31) is by using the same logic as in the linear regression case for this term.
Combining the above derivations, we get the following:

Exe+ ,ye+ [ℓ(θ
⊤xe+ , ye+)] (33)

≤ E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

∑
e∈Etrain

P(e)E[∥θ⊤(xe+ − xe+→e)∥] (34)

≤ E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] +

√
∥θ∥2

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥2
Λ|I(FE )|

(35)

= E(x,y)∼Ptrain
[ℓ(θ⊤x, y)] + ∥θ∥

∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥
Λ|I(FE )|

. (36)

Proof of bound on the orthonormal term. In this proof, we seek to prove the following:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+) . (37)

We will consider two cases to bound the result depending on whether r is greater or less than |I(FE)|.
Case I: r < |I(FE)|. Given this case, we can decompose as follows:∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

=
∥∥∥Q̃⊤

r,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (38)

=
∥∥∥Q̃⊤

r,⊥QrΛ
1
2
r

∥∥∥2 + ∥∥∥Q̃⊤
r,⊥Qr+1:|I(FE)|Λ

1
2

r+1:|I(FE)|

∥∥∥2 (39)

≤ λ1(e
+)
∥∥∥Q̃⊤

r,⊥Qr

∥∥∥2 + λr+1(e
+)
∥∥∥Q̃⊤

r,⊥Qr+1:|I(FE)|

∥∥∥2 (40)

≤ λ1(e
+)
∥∥∥Q̃⊤

r,⊥Qr

∥∥∥2 + λr+1(e
+) (41)

≤ λ1(e
+)
∥∥∥Q̃rQ̃

⊤
r −QrQ

⊤
r

∥∥∥2 + λr+1(e
+) (42)

= λ1(e
+)dist2(Q̃r, Qr) + λr+1(e

+) , (43)

where (40) is by the properties of norms, (41) is by the fact that ∥QQ′∥ for any orthogonal matrices is always less than
1, (42) is from Chen et al. [2021], and (43) is by the definition of the dist function between two subspaces.
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Case II: r ≥ |I(FE)|. Given this condition, we can get a simpler case without the second term:∥∥∥Q̃⊤
r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

=
∥∥∥Q̃⊤

r,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (44)

=
∥∥∥Q̃⊤

|I(FE)|,⊥Q|I(FE)|Λ
1
2

|I(FE)|

∥∥∥2 (45)

≤ λ1(e
+)
∥∥∥Q̃⊤

|I(FE)|,⊥Q|I(FE)|

∥∥∥2 (46)

≤ λ1(e
+)∥Q̃|I(FE)|Q̃

⊤
|I(FE)| −Q|I(FE)|Q

⊤
|I(FE)|∥

2 (47)

= λ1(e
+)dist2(Q̃|I(FE)|, Q|I(FE)|) , (48)

where (45) is by the condition of Case II and the others follow similarly from Case I. Now we can combine both of
these cases to form a bound based on s := min{r, |I(FE)|} to yield the final result:∥∥∥Q̃⊤

r,⊥Q|I(FE)|

∥∥∥2
Λ|I(FE )|

≤ λ1(e
+)dist2(Q̃s, Qs) + λs+1(e

+) .

C.4 Proof of Test-Domain Bounds in Terms of Counterfactual Noise

Proof of Corollary 3. First, by the rank condition on the corresponding clean counterfactuals, we know that the clean
counterfactual matrix ∆x must only span the spurious subspace. Thus, the eigenvectors of ∆x∆

⊤
x (denoted by Q∆x

are equivalent to the left singular vectors of Me+,Etrain
, i.e., Q ≡ QMe+,Etrain

= Q∆x .

Based on this, we can derive the result where we let s := min(r, |I(FE)|):

dist(Q̃s, Qs) = dist(Q̃∆̃x,s
, Q∆x,s) ≤

2∥ε∥
σs − σs+1

,

where the first is by the definition of Q̃ and the fact above, and the inequality is by Wedin’s theorem (Lemma 2).
Combining this with the original results in Theorem 1, we arrive at the bound.

C.5 Perfect Counterfactual Case

We now consider the noiseless counterfactual case. We can easily prove a corollary that the test-domain error is equal
to the train domain error if the counterfactuals are diverse enough (i.e., they satisfy the rank condition of Corollary 3).

Corollary 4. Instate the setting from Corollary 3. Further, assume that r ≥ |I(FE)| and the noise is zero, i.e., ε = 0,
then we can derive that the test-domain error for any θ satisfying the NCM constraint is equal to the training error for
both logistic and linear regression:

E(xe+ ,ye+ )∼Ptest

[
ℓ(θ⊤xe+ , ye+)

]
= E(x,y)∼Ptrain

[
ℓ(θ⊤x, y)

]
. (49)

Proof. First, we note that the inequality for squared error that introduces the 2 can be removed for perfect counter-
factuals because the term is 0 and doesn’t need to use bounds. Other than that, we can simply apply the result from
Corollary 3 and note that λs+1(e

+) will inherently be 0 due to the r ≥ |I(FE)| assumption and the ∥ε∥ = 0 by
assumption as well.

We validate this result using the synthetic dataset in Section 5 (see Figure 2a) with ε = 0, showing that when k ≥
|I(FE)|, the model achieves optimal performance.

The following comments are in order. 1) Simple CF pair-matching (1) provably generalizes to new test domains. If
we run an algorithm A to solve (1), and if it can perform well on the training domain, then, it will also perform well
on the test domain. 2) A linear number of oracle counterfactual pairs is sufficient to achieve domain generalization.
By assuming that the differences are linearly independent, the required number of counterfactual pairs is bounded by
k ≥ |I(FE)|. This implies that each counterfactual pair effectively removes one spurious dimension. Even when the
data dimension d is high in reality, by the sparse mechanism shift hypothesis, the spurious mechanism shift [Schölkopf
et al., 2021] suggests that the spurious feature space is indeed low, thereby supporting the effectiveness of our proposed
method.
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Figure 6: Illustration of the training samples, counterfactual pairs, validation examples, and test examples for the
Waterbirds-CF dataset. The training set (majority groups), validation set, and test set are identical to those in the
original Waterbirds dataset. Counterfactual pairs feature the same birds from the training set but with different back-
grounds.

A another case arises when e+ chosen to be sampled from mixture of training domains. In this case, the spurious
subspace misalignment vanishes as the test domain is already seen, thus xe+ = xe+→e i.e., λ1(e

+) = 0, NCM
objective (3) and simple CF pair-matching (1) reduce to empirical risk minimization (ERM).

D Detailed Experiment Setup and Hyperparameters

We provide a detailed description of our experiments setup and hyperparameter selection.

D.1 Detailed Construction of Waterbirds-CFs

The original Waterbirds dataset [Sagawa et al., 2019] combines bird images from the CUB dataset [Wah et al., 2011]
with background images from the Places dataset [Zhou et al., 2017]. The task is to classify whether a given image de-
picts a waterbird (y = 1) or a landbird (y = 0). Waterbirds include seabirds (albatross, auklet, cormorant, frigatebird,
fulmar, gull, jaeger, kittiwake, pelican, puffin, and tern) and waterfowl (gadwall, grebe, mallard, merganser, guillemot,
and Pacific loon).

In the dataset, the invariant features are represented by the bird segments, while the spurious features are the back-
grounds. In the training set, the background is highly correlated with the bird species: 95% of waterbirds appear in
a water background (ocean or natural lake), and similarly, 95% of landbirds are shown against a land background
(bamboo or broadleaf forest). The remaining 5% consist of counterfactual samples, which are random samples from
the majority group. Counterfactual pairs share the same bird segment but differ in the background. The validation and
test sets are identical to the original Waterbirds dataset, meaning the conditional distribution of the background given
either waterbirds or landbirds is 50%.

In summary, the modification made between our Waterbirds-CF dataset and the original waterbirds dataset only per-
tains to the minority groups in the training set. We randomly sampled 184 landbirds and 56 waterbirds from the
majority group and replaced the backgrounds of these samples to generate the minority group counterfactuals. See
Figure 6 for the illustration. We then applied ERM on both these two datasets to investigate the changing in the training
distribution. We include the convergence curve in Section E.2.

D.2 Hyperparameter Selection

In this section, we present all the hyperparameters and evaluation used in our experiments to ensure reproducibility.

Synthetic Dataset Invariant features are sampled from a standard normal distribution, i.e., zinv ∼ N (0, I), The
observation function gy is linear, with parameter θy ∼ N (0, σI), and the label y = sign(zinvθy). The spurious features

is correlated to the label y, i.e., zspu ∼ N
(

y
|I(FE)| , σsI

)
where σs varies across domains. The observation function

gx is a random orthonormal matrix. The dimension of z and x are both 100, i.e., m = d = 100.
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We run 100 iterations of gradient descent using binary cross-entropy loss. We use the Adam optimizer [Kingma,
2014] with a learning rate of 0.01 for ERM, IRM, and NCM. The Lagrange multiplier for both IRM and NCM is set
to λ = 1000 selected through grid search.

ColoredMNIST We use the Adam optimizer with a learning rate of 0.001 and a weight decay of 10−4. The model
is trained with a batch size of 256 for 40 epochs. We tune the hyperparameter r in the range [2, 24] using 256
counterfactual pairs.

Waterbirds-CF We use the Adam optimizer with a learning rate of 0.001 and a weight decay of 10−4. The model
is trained with a batch size of 256 for 100 epochs. We tune the hyperparameter r in the range [2, 24].

PACS We use the Adam optimizer with a learning rate of 0.01 and a weight decay of 10−4. The model is trained
with a batch size of 256 for 100 epochs. We tune the hyperparameter r in the range [2, 24].

Details on hyperparameter tuning and baseline method selection can be found in the code repository.

E Additional Experiments

Table 3: Main Results on ColoredMNIST

in-domain validation oracle validation
in acc test acc in acc test acc

ERM (CLIP) 0.852 0.093 0.753 0.253
IRM 0.799 0.118 0.724 0.469
REx 0.797 0.121 0.691 0.664
GroupDRO 0.798 0.127 0.786 0.201
Fish 0.798 0.118 0.495 0.486
SWAD 0.800 0.113 0.501 0.505
LISA 0.705 0.705 0.693
MatchDG w. random 0.799 0.120 0.511 0.512
MatchDG w. 1NN 0.789 0.217 0.728 0.662
MatchDG w. clean 0.793 0.181 0.742 0.672
NCM w. random 0.794 0.176 0.680 0.706
NCM w. 1NN 0.736 0.649 0.711 0.707

NCM w. clean 0.740 0.727
random guess 0.500 0.500 0.500 0.500
ERM oracle 0.735 0.730 0.735 0.730
theory oracle 0.750 0.750 0.750 0.750

0.693

0.693 0.714

Table 4: Main Results on Waterbirds-CF

Oracle Validation
in acc wg acc in acc wg acc

ERM (CLIP) 0.885 0.781 0.882 0.800
ERM+UW 0.889 0.795 0.882 0.829
IRM 0.838 0.707 0.820 0.767
REx 0.891 0.617 0.878 0.729
GroupDRO 0.906 0.684 0.896 0.827
Fish 0.900 0.744 0.869 0.805
LISA 0.904 0.722 0.876 0.812
MatchDG w. random 0.793 0.009 0.785 0.149
MatchDG w. 1NN 0.886 0.411 0.886 0.411
MatchDG w. estimated CF 0.906 0.536 0.896 0.651

NCM w. random 0.804 0.269 0.804 0.269

NCM w. 1NN 0.892 0.521 0.882 0.560
NCM w. estimated CF 0.864 0.854

In-domain Validation

0.812 0.860

In this section, we include more experiments results. We further illustrate the effectiveness of our method, as well as
the hyperparameters sensitivity.

E.1 Ablation Study

Sensitivity on truncated SVD parameter r. We empirically evaluate the trade-off effect of the hyperparameter r
on model performance during linear probing on the Waterbirds-CF dataset (cf. Figure 7), thus validating Theorem 1
comment (iii): accuracy trade-off induced by r. This pattern reflects the model’s shifting reliance from spurious to
invariant features: when r is too small, spurious correlations dominate, resulting in high in-domain but low worst-
group performance. As r increases and suppresses these spurious features, worst-group accuracy improves. However,
beyond a certain point, further increases in r begin to remove invariant features as well, leading to a decline in both
metrics.
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Table 5: Main Results on PACS

In-domain Validation Oracle Validation
A C P S Avg A C P S Avg

ERM (CLIP) 0.924 0.968 0.996 0.859 0.937 0.924 0.968 0.996 0.859 0.937
IRM 0.938 0.976 0.996 0.840 0.938 0.941 0.976 0.996 0.845 0.940
REx 0.953 0.963 0.993 0.836 0.936 0.953 0.975 0.996 0.845 0.942
GroupDRO 0.903 0.963 0.996 0.873 0.934 0.941 0.975 0.996 0.843 0.939
Fish 0.936 0.973 0.996 0.837 0.936 0.936 0.973 0.996 0.837 0.936
SWAD 0.941 0.976 0.996 0.838 0.938 0.941 0.977 0.996 0.838 0.938
LISA 0.926 0.997 0.848 0.937 0.940 0.997 0.864 0.946
MatchDG w. rand. 0.412 0.509 0.316 0.749 0.497 0.454 0.509 0.358 0.749 0.518
MatchDG w. 1NN. 0.971 0.995 0.880 0.973 0.996

NCM w. rand. 0.591 0.609 0.577 0.833 0.653 0.592 0.625 0.583 0.843 0.661
NCM w. 1NN. 0.957 0.974 0.974 0.885

0.978 0.983

0.964 0.953 0.964 0.887 0.955

0.998 0.882 0.953 0.964 0.998 0.955
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Figure 7: In-domain test and worst-group accuracy with changing hyperparameter r. In-domain accuracy remains
stable for small values of r, but starts to drop at r ≈ 128. Worst-group accuracy first increases then decreases as r
grows.
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Figure 8: The number of counterfactuals vs. in-test accuracy curve and test accuracy curve on ColoredMNIST using
the CLIP + Linear model. We conduct evaluations using 32, 64, 128, 256, and 512 data pairs.
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Figure 9: Compare the convergence curve of in-domain average test accuracy as well as the worst-case test accuracy
on waterbirds and Waterbirds-CF datasets
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Figure 10: The convergence curve of Waterbirds-CF dataset. It shows that our method is significantly more stable than
other DG methods without suffering overfitting.

Sensitivity on the number of CF pairs. We evaluate the number of counterfactual pairs needed on ColoredMNIST
dataset and report the in-domain test accuracy and test accuracy with 32,64,128,256,512 CF pairs. The results show
that with 32 counterfactual pairs, the number of pairs is insufficient for the model to eliminate spurious features,
leading to spurious correlations (as indicated by an in-domain accuracy over 75%, meaning the classification relies on
spurious features). However, when using 128 or 256 counterfactual pairs, the performance increases significantly and
remains stable compared to the 32 counterfactual pairs. An insufficient number of pairs fails to eliminate the spurious
feature, allowing the model to eventually rely on it, which leads to decreased accuracy on the test domain.

E.2 Comparison between waterbirds and Waterbirds-CF on ERM.

We run ERM on both waterbirds dataset and our Waterbirds-CF dataset. The results of ERM on both datasets are
almost identical (cf. Figure 9).

E.3 Beyond linearity

Though our NCM relies on linear assumption, our method could further work under nonlinear models empirically. In
this section, we consider waterbirds-cf dataset using ResNet dataset. We apply mini-batch SGD with 300 epochs on
the pretrained ResNet50 [He et al., 2016]5. The optimizer used is SGD with a step size of 0.001, momentum of 0.9,

5pretrained model is IMAGENET1K_V1 from torchvision. Download here.
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Table 6: Waterbirds-CF results on ResNet-50: best performance over 300 epochs, averaged across 5 runs. Adjusted
accuracy is the reweighted metric to match the training distribution. Avg. Acc and WG. Acc denotes average accuracy
and worst-group accuracy respectively.

Oracle Validation
In-domain Acc Test Acc Worst domain Acc

ERM 0.978 0.917 0.767
ERM + UW 0.980 0.958 0.856
IRM 0.943 0.920 0.849
GroupDRO 0.934 0.907 0.842
NCM w. oracle pairing 0.978 0.953 0.872
NCM w. oracle pairing +UW 0.980 0.957 0.900

and weight decay of 0.0001, as recommended for the Waterbirds dataset. The batch size is set to 128, For each batch,
128 counterfactual pairs are sampled to form the constraint term, which these pairs are matched prior to the linear
classifier with MSE loss, The latent dimensionality is 64. The Lagrange multiplier is set to 500 (and 100 for IRM). For
GroupDRO, we set the learning rate for updating the weight to be 0.01. All these hyperparameters are selected through
grid search. We report the convergence curve of our methods as well as comparison to other baselines in Table 4. In the
table, we report all the methods’ best performance on average over 300 epochs of running. From the result we show
that our NCM using only 240 counterfactual pairs, outperforms ERM by 10.5% on the worst group accuracy. Further,
we outperform other baselines like IRM and GroupDRO by 3.0% and 2.6%. Observe that Figure 10 shows that NCM
is much more stable compared to IRM and GroupDRO. As mentioned that NCM is a causal data-centric approach,
it could be combined with existed method to further improve domain generalization potentially. Here, we combine
our method with up-weighting technique and we get 4.4% improvement over the ERM up-weighting counterpart. We
further include experiments on the sensitivity of hyperparameters in Section D.
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