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Abstract
Spurious correlations can cause model perfor-
mance to degrade in new environments. Prior
causality-inspired work aim to learn invariant
representations (e.g., IRM) but typically under-
perform empirical risk minimization (ERM). Re-
cent alternatives improve robustness by leverag-
ing test-time data, but such data may be unavail-
able in practice. To address these issues, we
take a data-centric approach by leveraging in-
variant data pairs—training samples with equal
true predictive distributions, such as counterfac-
tuals intervening only on non-ancestors of the
target. We introduce noisy counterfactual match-
ing (NCM) that adds a linear constraint to ERM
based on counterfactuals that achieves provable
robustness to spurious correlations—even if the
counterfactuals are noisy. For linear causal mod-
els, we prove that the test domain error can be
upper bounded by the in domain error and a term
that depends on the counterfactuals’ diversity and
quality. Empirically, we validate on a synthetic
dataset that only a few counterfactual pairs are
needed and demonstrate on real-world bench-
marks (ColoredMNIST, Waterbirds, and PACS)
that linear probing on a pretrained ViT-B/32
CLIP backbone improves robustness.

1. Introduction
Spurious correlations are misleading patterns in the train-
ing data—relationships between features and the target that
do not hold across environments. Models trained on such
correlations may perform well on training data but fail to
generalize when the environment changes, as these cor-
relations reflect confounding or coincidental associations
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rather than true causal links. Addressing spurious corre-
lations is critical for building models that are robust to
distribution shifts, particularly in high-stakes domains like
healthcare, finance, and public services, where robustness
and reliability are critical.

One major approach to handling spurious correlations is
based on invariant representation learning (Peters et al.,
2016; Li et al., 2018b;a; Arjovsky et al., 2019) in vari-
ous forms. Some works aim to learn representations whose
marginal p(h(x)) (Li et al., 2018b) and conditional distri-
butions p(h(x)|y) (Li et al., 2018b) are invariant across
domains or environments. Others invariance works are
inspired by causality such as Invariant Causal Prediction
(ICP) (Peters et al., 2016) which uses conditional inde-
pendence tests to find features that are invariant predic-
tors across domains. Similarly, invariant risk minimization
(IRM) (Arjovsky et al., 2019) seeks to learn representations
such that the predictive distribution p(y|h(x)) is invari-
ant across domains. While these causality-based works are
more theoretically grounded, they often fail to beat empiri-
cal risk minimization (ERM) on real-world tasks (Gulrajani
and Lopez-Paz, 2021; Koh et al., 2021; Bai et al., 2024),
which may be due to the strong assumptions required for
correctness that do not necessarily hold in practice.

Given the inherent challenges of spurious correlation, other
prior work leverages additional data, usually from the test
domains. For example, some work use additional unla-
beled test data to enhance predictions in the test domains
(Ben-David et al., 2010; Daumé III, 2009; Mansour et al.,
2009). A related approach is test-time adaptation which al-
lows the model to dynamically adapt to test domain data
quickly, usually without finetuning or model retraining
(Azimi et al., 2022; Wang et al., 2023; Sun et al., 2020).
Another relaxation requires test domain metadata, which
are descriptive features of the domains like geographic lo-
cation, timestamp, etc. For example, D3G (Zhang et al.,
2023a) addresses distribution shifts by leveraging such
metadata under the assumption that the test distribution can
be represented as a linear combination of training domain
distributions. However, collecting test domain samples or
metadata can be expensive or impractical in many real-
world scenarios. For example, in medical related applica-
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tions, due to privacy restriction, test domain data might not
be available when new deployment occurs. Consequently,
practitioners may face an important question: Is there a
type of data solely from training domains that could prov-
ably make models invariant to spurious correlations?

To address this question, we propose a data-centric ap-
proach that leverages invariant data pairs—samples from
the training domains that have equal predictions under the
robust classifier. One example of an invariant pair is a sam-
ple of the same object in two different domains. For ex-
ample, an image of the same dog running on grass versus
on a paved road would form an invariant pair. To formal-
ize this notion with causality, we focus on counterfactuals
(CF), where the intervened variables are non-ancestors of
the target variable. The factual and this counterfactual will
form a counterfactual pair that inherently satisfies the in-
variance property. Intuitively, these counterfactuals answer
the question: “What would this sample be like if it were
generated from different domain?”

While it might at first seem that counterfactual pairs (or
more generally invariant pairs) would be infeasible to col-
lect, we suggest several scenarios where these pairs are pos-
sible to collect in practice. First, when the spurious cor-
relations are artifacts of a measurement process (e.g., x-
ray machine, microscope, staining methodology, etc.), then
an invariant pair could be collected by measuring the same
specimen under two different environments (e.g., send the
same patient to two x-ray machines). While this costs twice
as much per sample, it would provide a powerful signal for
making the model robust to future measurement changes
(e.g., x-ray machine replacements)—indeed, we show both
theoretically and empirically that only a small number of
pairs are needed for enhanced robustness. Note that this
approach would not even require manual labels (e.g., a di-
agnosis) since it is assumed that the labels would be the
same. Second, when a domain expert can identify spuri-
ous features, they can directly edit spurious features of the
sample. An example of this would be using image edit-
ing software including AI-based image editing to change
the background of an image while keeping the subject the
same (e.g., putting a cow on a boat or a fish in a desert).
Furthermore, we explicitly design our approach to handle
approximate or noisy counterfactual pairs, and it only re-
quires a small number of pairs to achieve robustness. Thus,
we believe this scenario is both practical and reasonable in
some cases.

At a higher level, invariant data pairs enable a way to im-
plicitly specify knowledge of spurious correlations instead
of requiring explicit specification (e.g., specifying a causal
graphical model). Analogously, collecting invariant pairs is
to spurious correlation as collecting class labels is to clas-
sification. In both cases, explicitly defining the target ob-

ject (either spurious correlations or class) is very challeng-
ing but implicitly defining them through examples is eas-
ier. In particular, we target applications where only implicit
knowledge of spurious correlations is known (see Table 1
for a summary and Section 2.3 for a more in-depth discus-
sion). We hypothesize that invariant data pairs could
provide a data-driven way to specify spurious correla-
tions and give evidence for this hypothesis both empiri-
cally and theoretically in this paper.

Table 1. An illustrative taxonomy of scenarios from explicit
knowledge to no knowledge of spurious correlations. We target
the applications between level 2 to level 1.

knowledge on spurious features pair data acquisition
level 3 explicit knowledge model constraint
level 2 soft expert knowledge sample editing
level 1 implicit assumed CF pair collection
level 0 no knowledge -

Given a small set of counterfactual pairs that satisfy the in-
variant property, we propose a simple method called Noisy
Counterfactual Matching that simply adds a constraint to
ERM that the predictions on the two points in the invariant
pairs must match. Given perfect counterfactuals, NCM is
similar to the objective in MatchDG (Mahajan et al., 2021),
but MatchDG does not explicitly handle noisy counterfac-
tuals or theoretically analyze the approach. For linear mod-
els, this constraint ensures that the classifier is orthogonal
to difference between the two points of the pair. Figure 1
illustrates our CF pair matching idea using a simple two-
dimensional binary classification with a single counterfac-
tual pair. While ERM would learn a non-robust classifier,
our method using only a single counterfactual pair would
force the classifier to be orthogonal to the pair difference
(denoted by green line) and thus make it robust to the test
domain which modified the spurious feature. Intuitively,
CF pairs act as negative signal and tell the model which
features to ignore. Analogously, this is the opposite of the
target variable y, which acts as a positive signal and tell
the model which features are relevant for prediction. While
NCM does not require causal modeling to be applied, to
better understand our method, we analyze NCM under the
latent causal modeling setting and prove that even with
noisy counterfactuals, our approach can be provably robust
to spurious correlations that change in the test domain.

We summarize our contributions as follows:

1. We introduce a data-centric approach to spurious cor-
relations based on a small dataset of (noisy) counter-
factual pairs that adds a simple constraint to ERM to
increase robustness.

2. We theoretically prove that, in both linear and logistic
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Figure 1. While ERM ĉ on the training domains (circles and trian-
gles) is not robust to the change in spurious feature in the unseen
test domain (pluses), our NCM method with a single counterfac-
tual pair (green dots) would find the robust classifier c∗ by con-
straining the coefficients to be orthogonal to the difference in the
counterfactual pair (green line). The color represents the binary
label Y .

regression settings, NCM ensures robustness to spu-
rious correlations, even with only small number of
noisy or approximate counterfactuals.

3. We empirically validate our theory using a synthetic
dataset as well as linear probing on a pretrained ViT-
B/32 CLIP backbone across multiple datasets: Col-
oredMNIST (Arjovsky et al., 2019; Gulrajani and
Lopez-Paz, 2021), Waterbirds dataset (Sagawa et al.,
2019) and PACS dataset (Gulrajani and Lopez-Paz,
2021) (cf. Table 2, Table 3, Table 4).

2. Problem Setup
To formalize the goal of robustness to spurious correla-
tion, we will consider a variant of the domain generaliza-
tion (DG) problem for out-of-distribution robustness. Do-
main generalization considers a set of related domains or
environments E . The algorithm is given samples from a
set of training environments Etrain ⊆ E but aims to per-
form well on the unseen test environments Etest ⊂ E .
Formally, given samples from each training environment
{{(xe,i, ye,i)}ne

i=1}e∈Etrain , the goal is to find model param-
eters θ that minimizes the worst case risk over all possible
unseen distributions:

min
θ

max
e∈Etest

E(x,y)∼Pe
[ℓ(hθ(x),y)] , (1)

where ℓ is a per-sample loss function such as mean squared
or cross-entropy loss. The key challenge in domain gener-
alization is the lack of data from the test environments. In

latent invariant features latent spurious features
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Figure 2. Illustration of the latent domain causal model. The an-
cestors of the target y are z1, z2, which are assumed to be invari-
ant across domains (see Assumption 1). On the other hand, z3, z4
are spurious features because they are not ancestors of y but are
descendants of y or its ancestors.

particular, if there are spurious correlations in the training
domains that do not hold in the test domains, then a model
trained using ERM or similar will perform poorly on the
test domains.

We consider a data-centric relaxation of this problem where
we assume access to an additional small dataset of invari-
ant data pairs. Intuitively, these invariant data pairs are
ones that should have the same prediction under the robust
model, e.g., if the task is medical diagnosis, x-rays from
two different machines of the same patient should predict
the same probabilities. However, to formally define invari-
ant pairs, we need to first define optimally robust classifier
given an arbitrary environment set (potentially infinite).

Definition 1 (Optimally Robust Classifier). Given a po-
tentially infinite set of environments E , the optimally robust
classifier is defined as:

h∗
E := argmin

h
max
e∈E

E(x,y)∼Pe
[ℓ(h(x),y)] , (2)

where the optimization is over all possible predictive func-
tions h.

While this optimally robust classifier is not perfectly
achievable like the Bayes optimal classifier, it provides a
theoretically optimal classifier that will enable us to define
invariant pairs. Specifically, invariant data pairs are for-
mally defined as pairs that would give the same prediction
values under

Definition 2 (Invariant Pair). Given a set of environments
E , a pair of distinct inputs (x,x′) with x ̸= x′ is an in-
variant data pair if and only if the predictions under the
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optimally robust classifier are equal, i.e., h∗
E(x) = h∗

E(x
′),

where h∗
E is defined as in Definition 1.

While at first glance, invariant data pairs may seem impos-
sible to collect, we believe the intuitive and formal notion
of counterfactuals provides a good way to understand these
invariant pairs. Intuitively, as described in the introduc-
tion, counterfactual data points where only spurious fea-
tures (e.g., background of an image) are changed while
the substantive or causal features (e.g., identity of the fore-
ground object) are maintained. Formally, in the next sec-
tions, we will develop a causal perspective on invariant data
pairs that formally defines (1) the set of environments E un-
der the assumption of spurious correlation and (2) counter-
factual pairs which will satisfy the invariant pairs property.
Finally, we note that the idea of invariant data pairs could
be considered in non-causal frameworks where the set of
environments is defined in other ways (e.g., a Wasserstein-
ball around the training distributions or total variation be-
tween the training distribution to the test distribution) (Al-
buquerque et al., 2019; Blanchard et al., 2021; Ben-David
et al., 2010) and the invariant pairs would be defined differ-
ently, but we leave this to future work.

2.1. Causality Preliminaries

To formally define the set of spurious correlation environ-
ments and their corresponding invariant pairs, we first in-
troduce some related concepts in causality. In summary, we
consider that each domain (or environment1) corresponds
to a distinct structural causal model (SCM) (Pearl, 2009,
Definition 7.1.1), the differences of the SCMs are equiva-
lent to interventions, and counterfactuals are based on ap-
plying two different SCMs to the same exogenous noise.
First, we formally define an SCM.

Definition 3 (Structural Causal Model (Pearl, 2009, Def-
inition 7.1.1)). An SCM M is represented by a 3-tuple
⟨U ,V,F⟩, where U is the set of exogenous noise variables,
V is a set of causal variables, and F := {f1, f2, . . . , fm}
denotes the set of causal mechanisms for each causal vari-
able inZ given its corresponding exogenous noise and par-
ents, i.e., vi = fi(ui,vPa(i)).

Given this formulation, we consider two notions when
comparing two different causal models: intervention set
and counterfactuals.

Definition 4 (Intervention Set). Given two SCMs M and
M′ defined on the same set of exogenous noise and causal
variables, the intervention set is defined only in terms of
their causal mechanisms F and F ′ respectively:

I(F ,F ′) = {i : fi ̸= f ′
i} . (3)

1We will use domain and environment interchangeably.

Note that this definition allows multiple types of interven-
tion including soft, hard or do-style interventions. We now
define counterfactual pairs as applying two SCMs to the
same exogenous noise based on the original definition of
counterfactuals in SCMs (Pearl, 2009, Definition 7.1.5).

Definition 5 (Counterfactual Pair). A pair of causal vari-
able realizations (z, z′) is a counterfactual pair between
two SCMs M and M′ (with the same set of exogenous
noise variables and causal variables) if and only if there
exists a exogenous noise realization u such that z is the
solution toM and z′ is the solution toM′.

Note that this is different than estimating counterfactuals
given some factual evidence, which would require the three
steps of abduction, action, and prediction. Rather, here we
simply define the theoretic notion of a counterfactual pair
between two SCMs. However, in practice, we expect that
perfect counterfactual pairs will not be feasible so we fo-
cus on providing theoretic analysis of noisy or approximate
counterfactual pairs.

2.2. Latent Spurious Correlation

After introducing the causal preliminaries, we now formal-
ize the problem latent spurious correlation by formalizing
the collection of SCMs that define domains. This is follows
many latent SCM multi-domain works (Liu et al., 2022;
Zhang et al., 2023b; von Kügelgen et al., 2023; Zhou et al.,
2024).

Definition 6 (Class of Latent Domain SCMs). Letting E
denote the set of domains, a latent domain SCM class is a
set of latent SCMsME = {Me}e∈E such that:

1. The causal models share the same set of exoge-
nous noise variables, causal variables, and exogenous
noise distribution PU .

2. The causal variables V are split into observed X ∪ Y
and latent Z variables

3. The models share the same causal mechanisms for the
observed variables, which we will denote by gx and
gy.

The latent causal mechanisms for the i-th variable in Z for
the e-th domain will be denoted as fe,i, and the induced
distribution over the observed random variables for each
domain will be denoted by Pe(x,y).

We now give our primary spurious correlation assumption
that the domains in the class can only intervene on spurious
latent variables with respect to the target variable y, i.e.,
non-ancestors of y.

Assumption 1 (Spurious Correlation Latent SCM Class).
The intervened variables between any two domains in the
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latent SCM class ME must be non-ancestors of y, i.e.,
I(Fe,Fe′) ∩ Anc(y) = ∅,∀e, e′. Equivalently, all do-
mains must share the mechanisms for ancestors of y, i.e.,
fe,i = fe′,i,∀i ∈ Anc(y).

This assumption limits the types of shift that we could see
at test time to only spurious features, i.e., non-ancestors of
y. However, this assumption does not limit the strength of
these shifts, i.e., they could be arbitrarily strong in the spu-
rious features. While this does not cover all possible distri-
bution shifts, it nonetheless captures an interesting collec-
tion of shifts that could cause a model to perform poorly on
unseen test domains.

2.3. Spurious Counterfactuals are Invariant Pairs

Given our causal model setup in the previous section, we
can now prove that counterfactuals within a spurious corre-
lation latent SCM class are invariant pairs w.r.t. the corre-
sponding domain distributions.
Proposition 1. Given a spurious correlation latent SCM
classME , any counterfactual pair between models in this
class will be an invariant pair w.r.t. the optimally robust
classifier h∗

E induced by the domain distributions {Pe}e∈E .

See proof in Appendix B.1. This elegantly connects causal
counterfactuals and invariant pairs though again we note
that invariant pairs could be defined for other perspectives.
The natural next question is: Is it possible collect such pairs
in reality? We argue that while perfect counterfactual pairs
are not possible, noisy or approximate counterfactual pairs
could be reasonably simple to collect in different scenarios.
We discuss some of these scenarios next.

Availability of such pairs: For certain applications, ob-
taining such CF pairs are both possible and effective. Ta-
ble 1 from the introduction summarizes a range of cases
where there could be enough implicit knowledge of spuri-
ous correlations to collect them. We outline these levels in
more detail below.

Level 3 - Explicit knowledge : In some scientific settings,
spurious correlation can be coded as an explicit and mathe-
matical modeling constraint. For example, SchNet (Schütt
et al., 2018) builds molecule symmetries and invariance di-
rectly into the model structure. This case is straightforward
but does not hold in general, so we do not consider it in our
work.

Level 2 - Domain expert “soft” knowledge of spurious fea-
tures: In some applications, domain experts can articulate
which features are irrelevant, even if they cannot encode
this knowledge as model constraints. For example, an x-ray
technician knows that certain medical equipments should
not affect their diagnosis of cancer or not (Zech et al., 2018;
Oakden-Rayner et al., 2020). In this case, CF pairs can

be either manually curated (via image editing or generative
models) or collected (e.g., by obtaining paired x-rays with
and without fluid lines). Simple image augmentation tech-
niques like rotations, flips or color distortions may also fall
under this category as they implicitly encode spurious fea-
tures that are assumed to not affect the downstream tasks
(like ColoredMNIST and RotatedMNIST experiment (cf.
Section 6)).

Level 1 - Implicit knowledge: At this level, the only differ-
ences between domains are assumed to be spurious features
because of application-specific knowledge, but domain ex-
perts may not know the spurious features a priori. As one
example, the differences between data coming from two
similar microscopes can be assumed to be spurious since
the measurement effects should not affect the underlying
physical phenomena of interest. In this case, it is feasible to
collect a small number of counterfactual pairs by measur-
ing a small number of samples with both microscopes. Fur-
ther, if the implicit knowledge could be verified after ob-
taining the pairs, it allows post-hoc validation of CF pairs.

Level 0 - No knowledge: Without any hints or assumptions
about spurious features as in levels 1-3, making a model ro-
bust to spurious features is likely infeasible. To illustrate,
consider a simple causal structure without any knowledge
on (latent) spurious features: z1 → y → z2 where only z1
is invariant. Without any knowledge, there is no informa-
tion to distinguish between invariant feature z1 and spuri-
ous feature z2. Moreover, if z2 is more strongly correlated
to y or related to y that is easier to extract from inputs
x, models are prone to shortcut learning (Hermann et al.,
2024), the model prediction will rely heavily or nearly
solely on z2.

We specifically target the hard and feasible levels 1 and 2,
and suggest that in certain cases counterfactuals could fea-
sibly be collected and in certain cases the counterfactuals
could be created either via manual editing or using gener-
ative AI tools (Rombach et al., 2022; Betker et al., 2023).
Noticing that this CF pairs acquisition are costly, so we ask
that if we have k estimated CF pairs with noise ϵ, what kind
of robustness guarantee can we get?

3. Noisy Counterfactual Matching (NCM)
Equipped with the above problem setup, we introduce the
noisy counterfactual matching method that aims to identify
and recover the spurious subspace by leveraging CF pairs.
The key intuition is that by construction these CF pairs only
differ in a spurious feature subspace and thus provide sig-
nal for identifying the spurious subspace. Once the correct
spurious subspace is successfully recovered, the prediction
can be made robust to this spurious subspace.

Given a set of counterfactual pairs {(x(j)
ej ,x

(j)
ej→e′j

)}kj=1,
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we define a simple CF matching method that merely adds a
constraint to ERM that enforces the outputs of the pairs to
match:

min
θ

E(x,y)∼Ptrain [ℓ(hθ(x),y)],

s.t. hθ(xej ) = hθ(xej→e′j
) ∀j,

(4)

where the loss ℓ(·, ·) measures data fidelity by prediction
function hθ. If hθ is linear, the constraint could simplify
to θ⊤δj = 0,∀j, where δj := x

(j)
ej − x

(j)
ej→e′j

. Intuitively,
this constraint forces the classifier θ to be orthogonal to the
CF differences, whose subspace only spans spurious fea-
tures. The objectives in MatchDG (Mahajan et al., 2021)
and DIRT (Nguyen et al., 2021) consider Lagrangian for-
mulations of this problem. However, they lack theoretic
analysis and do not explicitly identify the necessary prop-
erties that the data pairs must satisfy to achieve robustness.
In particular, they do not consider how to be robust when
the data pairs are non-ideal (e.g., approximate or noisy)—
which is precisely the practical scenario.

To address non-ideal pairs for linear models, we propose
a slightly modified objective based on finding a lower-
dimensional subspace spanned by counterfactual pair dif-
ferences. Concretely, let us define a (potentially noisy)
counterfactual pair difference matrix as:

∆̃x :=
[
x
(1)
e1 − x

(1)
e′1

, . . . ,x
(k)
ek − x

(k)
e′k

]
∈ Rd×k.

Because the pairs are noisy, making the linear model or-
thogonal to the whole matrix ∆̃x may remove many non-
spurious features and degrade performance. Thus, we pro-
pose to make the linear classifier only orthogonal to the
best r-dimensional subspace of ∆̃x and propose the Noisy
Counterfactual Matching problem for linear models:

min
θ

E(x,y)∼Ptrain [ℓ(θ;x,y)]

s.t. θ⊤Ũr = 0,
(5)

where Ũr ∈ Rd×r denotes the space of left singular vec-
tors corresponding to the r-truncated SVD of ∆̃x. Notice
that the constraint enforces the classifier θ to be orthogo-
nal to the subspace Ũr. With perfect counterfactuals, Ũr

would correspond to only the spurious subspace and the
classifier would be robust to changes in the spurious sub-
space. Because of noise, a much more careful analysis is
required (which we do in the next section) to show that this
approach improves robustness based on the diversity and
quality of the pairs.

Algorithmically, to ensure the learned model orthogonal to
be the spurious feature subspace, we consider preprocess-
ing approach that projects the samples x onto the orthog-
onal complement of Ũr and then trains an unconstrained
classifier on top (See Algorithm 1). This ensures that the

effective classifier, i.e., the composition of the preprocess-
ing and unconstrained classifier, is orthogonal to the sub-
space defined by Ũr. Unlike projected gradient descent,
this enables simple optimization without any special pro-
jection step every iteration. A projected gradient descent
method could also be used here, and we expect it would
have similar results, but we do not explore it further.

Algorithm 1 Noisy Counterfactual-Matching (NCM)

Input: Training data setDtrain; pair difference matrix ∆̃x ∈
Rd×k; truncated SVD dimension r; number of epochs T ;
step size η; batch size B.

// Phase I: Find projection matrix to remove estimated
spurious subspace Ũr.
Ũr, Σ̃r, Ṽ

⊤
r = TruncatedSVD(∆̃x, r)

P = I − ŨrŨ
⊤
r

// Phase II: Gradient descent with preprocessing.
for t = 1, 2, . . . , T do

for sample mini-batch {(xi,yi)}Bi=1 ⊂ Dtrain do
θ ← θ − η∇ 1

B

∑B
i=1 ℓ(hθ(Pxi),yi),

end for
end for

Output θ

4. Theoretic Guarantees of NCM for Linear
Models

In this section, we provide theoretic guarantees of NCM
(5) for both linear regression and logistic regression. Our
study builds on the following steps. 1) We first show that
the test domain error could be decomposed into the in-
domain error and the misalignment of the estimated spuri-
ous subspace Ũr and the relevant test domain spurious sub-
space (cf. Theorem 1 and Theorem 3). 2) We then apply
Wedin’s sinΘ theorem (Wedin, 1972) to decompose the
spurious subspace misalignment into two components: (a)
the discrepancy between the truncated singular subspaces
of the noisy counterfactual pair matrix ∆̃x and the true ma-
trix ∆x, where the truncation is determined by the user-
specified rank r; and (b) the model misspecification error
arising from the unknown dimensionality of the spurious
subspace |S̃| (cf. Corollary 2 and Corollary 4).

4.1. Error Bounds of NCM for Linear Regression

We will assume the data generating process for linear re-
gression with latent causal variables is as follows: ze =
A∗

eu, xe = B∗ze, y = A∗ze, where u ∼ Pu, ze ∈ Rm,
Ae ∈ Rm×m and xe ∈ Rd, B∗ ∈ Rd×m, θ∗ ∈ Rm.

To quantify the deviation of the test domain e+ ∈ Etest from
the training domain Etrain, we introduce the second moment
matrix me+,e of the difference between the test domain
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e+ and its induced training domain e which (xe+ , xe+→e)
forms an oracle CF pair. xe+→e is only conceptual and
not observed in the training data. Further, these conceptual
samples are also realizations of the training distributions
because their exogenous noise follows distribution PU . (cf.
Definition 6) We define its largest eigenvalue of the popu-
lation second moment matrix λ1(e

+) as the largest eigen-
value of the following population matrix

Eu[(xe+ − xe+→e)(xe+ − xe+→e)
⊤]. (6)

We adopt the conventional definition of the distance be-
tween any two subspaces U1, U2 of the same size Rd×j , j ∈
[d] as (Chen et al., 2021) dist (U1, U2) := ∥U1U

⊤
1 −

U2U
⊤
2 ∥. We have the following guarantee on the spurious

correlation using NCM (5) for linear regression.

Theorem 1. Suppose Assumption 1 and the number of es-
timated counterfactual pairs satisfies k ≥ min{r, |S|}.
Then, for any solution θ̂ of NCM (5) with mean square loss,
for any test domain satisfyingMe+ ∈ME , there holds

Ep(xe+ ,ye+ )[∥θ̂⊤xe+ − ye+∥2]

≤ 2Ep(e)p(xe,y)[∥θ̂
⊤xe − y∥2]︸ ︷︷ ︸

In-domain error

+2λ1(e
+)∥θ̂∥2∥Ũ⊤

r,⊥US∥2︸ ︷︷ ︸
Spurious subspace misalignment

,

where λ1(e
+) is defined in (6), and r is the user defined

dimension for the truncated SVD, and |S| is the dimension
for the spurious space.

See Appendix B.3 for proofs. Observe that the general-
ization error can be controlled by the in-domain error and
spurious subspace misalignment. It sheds light on the im-
pact of the problem parameters on the spurious correlation.
Specifically, the following comments are in order.

(i) Few shot counterfactual pairs requirement: Notice
that the number of counterfactual pairs only need to satisfy
k ≥ min{r, |S|}. It is easily satisfied as the spurious fea-
ture space is in general low dimensional due to the sparse
mechanism shift hypothesis (Schölkopf et al., 2021).

(ii) Difficulty of the test domain: λ1(e
+) denotes the dif-

ficulty of the test domain. As λ1(e
+) increases, the test

domain becomes more distant from the training domain.
A special case arises when e+ chosen to be sampled from
mixture of training domains. In this case, the spurious sub-
space misalignment vanishes as the test domain is already
seen, thus xe+ = xe+→e i.e., λ1(e

+) = 0, NCM (5) re-
duces to empirical risk minimization (ERM).

(iii) Accuracy trade-off induced by r: Observe that the
constraint θ⊤Ũr = 0 in the NCM objective (5) implies that
the classifier θ must lie within Ũr,⊥. Therefore, choos-
ing a smaller r increases the feasible region Ur,⊥, allow-
ing for a smaller in-domain error. An extreme case is

r = 0, in which case (5) reduces to minimizing only the
in-domain error, i.e., ERM. However, a smaller r leads to
a greater spurious subspace misalignment, as Ũr ∈ Rd×r

fails to accurately recover the true spurious subspace which
is of dimension Rd×|S̃|. Figure 4 presents empirical results
demonstrating how model performance varies with differ-
ent values of r, supporting our theoretical analysis. To
achieve optimal performance in practice, it is important to
carefully select r to balance those error terms. This can be
accomplished by tuning r on a held-out validation domain.

It becomes critical to quantify the second part: spuri-
ous subspace misalignment. Notice that Ũr ∈ Rd×r and
U|S| ∈ Rd×|S| are of different sizes, thus dist

(
Ũr, U|S|

)
is

not defined. However, it is straightforward to verify that

∥Ũ⊤
r,⊥US∥ ≤ dist

(
Ũmin{r,|S|}, Umin{r,|S|}

)
+ 1{r ̸=|S|}.

Observe that 1) the first term corresponds to the misalign-
ment between the min{r, |S|} truncated singular subspace
of the noisy counterfactual pair matrix ∆̃x, and that of the
true counterfactual pair matrix ∆x. That is, the distance
between Ũmin{r,|S|} and Umin{r,|S|}. The misalignment
can further be characterized by the Wedin’s sinΘ theo-
rem (Wedin, 1972), which measures how perturbations in
a matrix, ∆x → ∆̃x influence the alignment of its singu-
lar subspaces, Umin{r,|S|} → Ũmin{r,|S|}. 2) The second
term relates to the model misspecification error due to the
unknown size of the spurious subspace |S̃|. This term van-
ishes only when we have prior knowledge of |S̃| and set r,
the size of the truncated SVD, to match it. In general, |S|
is unknown; thus, one may overestimate or underestimate
it using r. Our theory addresses both cases and quantifies
the impact of such model misspecification in the bound. To
do so, we define σ1 ≥ · · · ≥ σk as the singular values of
the perfect counterfactual matrix ∆x in a descending order,
and define the singular value gap of ∆x as follows.

ρ := σmin{r,|S|} − σmin{r,|S|}+1. (7)

We have the following guarantee.

Corollary 2. Instate the setting in Theorem 1. Further,
suppose the noise ∆x − ∆̃x satisfies

σmax(∆x − ∆̃x) ≤ (1− 1/
√
2)ρ. (8)

Then, for any solution θ̂ of NCM (5) with mean square loss,
for any test domain satisfyingMe+ ∈ME , there holds

Ep(x+
e ,y)[∥θ̂

⊤x+
e − y∥2] ≤ 2Ep(e)p(xe,y)[∥θ̂

⊤xe − y∥2]

+ 8λ1(e
+)∥θ̂∥2 ∥∆x − ∆̃x∥2

ρ2
+ 4λ1(e

+)∥θ̂∥21{r ̸=|S|},

where λ1(e
+) and ρ are defined in (6) and (7).
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If the pairs are oracle (a.k.a. noiseless), without explicit
choosing r, ∆̃x = ∆x is a rank |S| matrix, equivalent to
choosing r = |S|. In this case, both second term and third
term vanish, and the test domain error converges to 0 as the
training risk converges to 0.

Remark 1 (Oracle counterfactual matching). When the es-
timated counterfactual is error-free, i.e., ∆̃x = ∆x. Sup-
pose Assumption 1 and the number of counterfactual pairs
in ∆x satisfy k ≥ |S|. Then, for any solution θ̂ of NCM (4)
with mean square loss, the following holds:

Ep(x+
e ,y)[∥θ̂

⊤x+
e − y∥2] ≤ 2Ep(e)p(xe,y)[∥θ̂

⊤xe − y∥2]

4.2. Error bounds of logistic regression NCM (5)

In this section, we further study the guarantee of NCM (5)
for logistic regression. We focus on the analysis on linear
observation function in this work, where the data gener-
ating process is specified as follows: ze = A∗

eu, xe =
B∗ze, y = sign(A∗ze), where u ∼ Pu, ze ∈ Rm,
Ae ∈ Rm×m and xe ∈ Rd, B∗ ∈ Rd×m, θ∗ ∈ Rm. Here ℓ
takes logistic loss ℓ(x) = log(1 + exp(−yθ⊤x)).

To quantify the deviation of the test domain from the train-
ing domain, for all i ∈ [k], we introduce k second-moment
random matrices of the difference between the test domain
e+i and its counterfactual in the training domain xe+i →ei

(similar to (6), which may not be observed in the training
set, but shares the same distribution), denoted as me+i ,ei

and define the empirical largest eigenvalue as λ1(e
+
i ).

mi := (xe+i
− xe+i →ei

)(xe+i
− xe+i →ei

)⊤ ∈ Rd×d

λ1(e
+
i ) := λ1(me+i ,ei

) ∈ R+. (9)

We have the following guarantee on the spurious correla-
tion using NCM for logistic regression.

Theorem 3. Suppose Assumption 1 and the number of es-
timated counterfactual pairs satisfies k ≥ min{r, |S|}.
Then, for any solution θ̂ of NCM (5) with negative log like-
lihood, there holds

Exe+ ,ye+

[
log
(
1 + exp(−ye+θ⊤xe+)

)]
≤ Ep(e)p(xe,y) log

{
1 +

1

k

k∑
i=1

exp
(
−yeiθ⊤xei

)
+
1

k

k∑
i=1

exp

(√
λ1(e

+
i )∥θ∥∥Ũ

⊤
r,⊥US∥

)
− 1

}
+
√

Eu[λ1(e+)]∥θ∥∥Ũ⊤
r,⊥US∥. (10)

Notice that, similar to the linear regression case in Theo-
rem 1, (10) implies that the test domain error in the test
domain consists of two main components: the first term

relates to the in domain error, while the second and third
terms capture the misalignment of the spurious subspace
due to noisy counterfactuals. Further, the number of coun-
terfactual pairs only has to satisfy k ≥ min{r, |S|}, which
is the same condition as in Theorem 1. There’ s also ac-
curacy trade-offs induced by the truncated SVD choice r.
Notice that, unlike the linear regression case Theorem 1,
where the hardness of the test domain is characterized by
the largest eigenvalue of the population matrix Eu[me,e+ ]
as defined in (6), the hardness of the test domain is now
bounded by the exponential moment of the largest eigen-
value of the sample covariance matrix mi defined in (9).
This distinction arises from the difference in the loss struc-
tures between the ℓ2 and logistic losses and do not scale
significantly differently.

We refer to Appendix B.6 for the results using Wedin’s
sinΘ theorem to bound the spurious misalignment of the
subspaces (cf. Corollary 4), and we also provide guaran-
tees when perfect counterfactual pairs are available (cf. Re-
mark 2).

To recover the correct invariant subspace, the difference
in invariant features must be smaller than the difference in
spurious features. However, random pairing does not en-
sure this condition.

Our theoretical results explain why CF pairs can enhance
robustness. The differences between these pairs enable ef-
fective separation of invariant features from spurious ones
when there is a substantial gap between the largest eigen-
value of the invariant features and the smallest eigenvalue
of the spurious features. Both random pairs from same tar-
get and different domain and the pairs from nearest neigh-
bor matching do not satisfy the property of CF pairs, which
leads to poor performance (cf. Section 6).

5. Related Works
In this section, we discuss some related approaches.

Data augmentation and generation: The data augmen-
tation approach is closely related to our proposed method,
particularly in the context of domain generalization. LISA
(Yao et al., 2024) is a Mixup-inspired augmentation strat-
egy that learns domain-invariant predictors through two
types of interpolation: intra-label mixing, which combines
samples sharing the same class label but originating from
different domains to enforce prediction consistency across
domains; and intra-domain mixing, which combines sam-
ples from the same domain but with different class la-
bels to encourage the model to respect class boundaries
within each domain. Other methods, such as those pro-
posed by Honarvar Nazari and Kovashka (2020); Shorten
and Khoshgoftaar (2019), use standard augmentation func-
tions including rotation, scaling, and noise addition. An-
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other line of research seeks to inflate the training data to im-
prove domain generalization. For example, Rahman et al.
(2019) use ComboGAN (Anoosheh et al., 2018) to gener-
ate new data, while DIRT (Nguyen et al., 2021) suggests
using StarGAN (Choi et al., 2018) to generate counterfac-
tual samples.

Distribution or Sample Matching in Addressing Spuri-
ous Features: Distribution matching methods, such as In-
variant Risk Minimization (IRM) (Arjovsky et al., 2019)
and Risk Extrapolation (REx) (Krueger et al., 2021), aim to
mitigate spurious correlations by learning domain-invariant
representations. Despite their theoretical appeal, IRM-
based approaches often underperform in practice, prompt-
ing several works to analyze and refine them (Rosenfeld
et al., 2020; Ahuja et al., 2022).

Beyond distribution matching, MatchDG (Mahajan et al.,
2021) introduces an iterative sample-level matching ob-
jective that aligns representations across domains in latent
space. Our method similarly employs sample-wise match-
ing but departs from prior group-level matching techniques.
Crucially, we provide a theoretical guarantee that, for do-
main generalization, only O(r) samples suffice—where r
denotes the dimension of spurious features in the latent
structural causal model (SCM)—in contrast to the nd →∞
requirement in earlier methods.

Multi-view or multi-modal data: A more recent line of
research integrates the text modality into visual domain
generalization tasks, as demonstrated by models like CLIP
(Radford et al., 2021) and ALIGN (Jia et al., 2021). These
methods focus on aligning text and image modalities dur-
ing training, leveraging large-scale datasets. This align-
ment enhances the model’s ability to generalize to out-
of-distribution samples, improving performance on unseen
data beyond the training set.

6. Empirical Evaluation
In this section, we provide some experiments on synthetic
and real-world datasets. (i) The synthetic data is instrumen-
tal in validating our theoretical findings. Specifically, we
validate the theory of robustness performance using oracle
CF pairs (Corollary 4). We also validate the linear depen-
dency between the number of counterfactual pairs and the
spurious feature dimensions. (ii) Beyond the synthetic data,
we thoroughly evaluate NCM (5) by a linear probing of a
preprocessed CLIP model (Radford et al., 2021) on mul-
tiple real-world datasets. While the CLIP model already
demonstrates superior zero-shot transfer capabilities (Rad-
ford et al., 2021) , our NCM (5) further enhances robust-
ness against spurious correlation. (iii) Moreover, we in-
vestigate three types of matching methods: random match-
ing, one nearest neighbor matching (Mahajan et al., 2021),

and noisy CF matching, and demonstrate the superiority of
CF matching over learned matching approaches. In all
experiments, we include in-domain validation and oracle
validation for evaluation (Gulrajani and Lopez-Paz, 2021).
See detailed validation mechanism as well as the hyperpa-
rameter tuning process in Appendix C.2. (iv) Lastly, we
perform several ablation studies to explore how the perfor-
mance of NCM (5) changes when key assumptions about
the data or model are relaxed. Specifically, we examine the
impact of varying the truncated SVD parameter r, and test-
ing scenarios with insufficient counterfactual data. We also
assess the model’s performance in the context of deep neu-
ral network pretraining, analyzing its robustness and gen-
eralization across these different settings.

6.1. Synthetic Experiments

We model both the structural causal models (SCMs) and
the observation function as linear functions adapting the
data generation approach from Rosenfeld et al. (2020).

ERM ERM on Z IRM NCM
0.0

0.2

0.4

0.6

0.8

1.0 true model

(a) A comparison of ERM,
ERM on Z , IRM, and NCM
shows that NCM achieves or-
acle accuracy, while IRM per-
forms similarly to ERM but
with higher variance. ERM on
Z means model access the true
observation function.
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(b) Accuracy vs. number of
oracle counterfactual pairs for
three different intervention set
sizes. The solid lines represent
the mean accuracy over 5 re-
peated runs, and the shaded re-
gions indicate the standard de-
viation.

Figure 3. Result on the synthetic dataset with oracle counterfac-
tual pairs with m = 100. In two training domains, σp,1 =
0.1, σp,2 = 0.2 and in the test domain it is σp,3 = 10. The total
number of training samples are 200 with 100 for each domain.

Data generation: Invariant features are sampled from
a standard normal distribution, i.e., zinv ∼ N (0, I), The
observation function gy is linear, with parameter θy ∼
N (0, σI), and the label y = sign(zinvθy). The spu-
rious features is correlated to the label y, i.e., zspu ∼
N
(

y
|S| , σsI

)
where σs varies across domains. The ob-

servation function gx is a random orthonormal matrix. The
dimension of z and x are both 100, i.e., m = d = 100.

We compare four methods on a binary logistic regression
within this framework: ERM, ERM with known observa-
tion function gx (ERM on Z), IRM, and NCM . (i) Ef-
fectiveness of NCM (5): the result shows that NCM (5)
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Table 2. Main Results on ColoredMNIST

in-domain validation oracle validation
in acc test acc in acc test acc

ERM (CLIP) 0.852 0.093 0.753 0.253
IRM 0.799 0.118 0.724 0.469
REx 0.797 0.121 0.691 0.664
GroupDRO 0.798 0.127 0.786 0.201
Fish 0.798 0.118 0.495 0.486
SWAD 0.800 0.113 0.501 0.505
LISA 0.705 0.705 0.693
MatchDG w. random 0.799 0.120 0.511 0.512
MatchDG w. 1NN 0.789 0.217 0.728 0.662
MatchDG w. clean 0.793 0.181 0.742 0.672
NCM w. random 0.794 0.176 0.680 0.706
NCM w. 1NN 0.736 0.649 0.711 0.707

NCM w. clean 0.740 0.727
random guess 0.500 0.500 0.500 0.500
ERM oracle 0.735 0.730 0.735 0.730
theory oracle 0.750 0.750 0.750 0.750

0.693

0.693 0.714

achieves 100% accuracy as if we have data from the test
domain while other methods achieves around 70% test ac-
curacy because these methods rely on the spurious features
(cf. Figure 3a). (ii) Linear number of counterfactual
pairs: Figure 3b shows that for linear casual model, we only
need approximately |S| counterfactual pairs to find spuri-
ous space correctly . When the number of counterfactual
pairs matches or exceeds the dimension of intervened set,
i.e, k ≥ |S|, NCM (5) achieves optimal test domain ac-
curacy, therefore validating few shot of counterfactual re-
quirement (cf. Remark 1).

6.2. ColoredMNIST

ColoredMNIST is first introduced in DomainNet (Arjovsky
et al., 2019). Although its imagery is deceptively sim-
ple, it is indeed one of the hardest domain generalization
benchmark as shown in Salaudeen et al. (2024) due to
strong accuracy on the inverse line effect. Indeed, poor
performance on ColoredMNIST has been widely reported
for baseline methods including ERM, IRM, DRO, Mixup,
MLDG, CORAL, MMD, ADA, and CondADA (Gulrajani
and Lopez-Paz, 2021, Section B.1).

We report the accuracy of results on ColoredMNIST (Ta-
ble 2) on a linear-probing pretrained ViT-B/32 CLIP model
(Radford et al., 2021). NCM (5) performs well on both in-
domain and oracle validation, achieving test domain accu-
racies of 69.3% and 71.4%, respectively, nearly matching

the ERM oracle accuracy of 73%, demonstrating the effec-
tiveness of NCM (5). The performance difference between
two validation methods are only 2%, indicating that NCM
(5) is less sensitive to hyperparameter tuning. This stands
in sharp contrast to other algorithms such as ERM, IRM,
GroupDRO, Fish, and REx, which only achieve around
10% accuracy with in-domain validation and 20%-66%
with oracle validation except for LISA which achieves
69.3% on both validation methods.

We further observe that both random pairing and 1NN pair-
ing are effective on ColoredMNIST. We suspect this is due
to the inherent similarity of invariant features across sam-
ples. As a result, any random pair sharing the same target
label y but from different domains d is a reasonable approx-
imation of CF pairs.

6.3. PACS

PACS (Li et al., 2017) contains total 9991 images from
four domains: Photos (P), Art painting (A), Cartoon (C)
and Sketch (S). The task is to classify objects over 7
classes. We report NCM as well as the baselines on the
pretrained-CLIP model in Table 4. From the result, (i) no-

Table 3. Main Results on Waterbirds-CF

Oracle Validation
in acc wg acc in acc wg acc

ERM (CLIP) 0.885 0.781 0.882 0.800
ERM+UW 0.889 0.795 0.882 0.829
IRM 0.838 0.707 0.820 0.767
REx 0.891 0.617 0.878 0.729
GroupDRO 0.906 0.684 0.896 0.827
Fish 0.900 0.744 0.869 0.805
LISA 0.904 0.722 0.876 0.812
MatchDG w. random 0.793 0.009 0.785 0.149
MatchDG w. 1NN 0.886 0.411 0.886 0.411
MatchDG w. estimated CF 0.906 0.536 0.896 0.651

NCM w. random 0.804 0.269 0.804 0.269

NCM w. 1NN 0.892 0.521 0.882 0.560
NCM w. estimated CF 0.864 0.854

In-domain Validation

0.812 0.860

tice that ERM linear-probing CLIP outperforms all previ-
ous methods shown in the previous benchmark (Gulrajani
and Lopez-Paz, 2021). (ii) Our method NCM (5) could
further improve test domain accuracy. Using in-domain
validation, we achieves 95.3% outperforms ERM by 1.6%.
Similarly, with oracle validation, we also achieves 1.6%
performance boost against ERM and other methods. (iii)
The quality of the pairing matters on this dataset. Unlike
ColoredMNIST, random pairing samples with same labels
across different domains dramatically affects the model’s
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performance. We suspect that random pairing on PACS
misleads the model due to significant differences in the in-
variant features across samples. When invariant features
vary greatly, they can be conflated with spurious features
during truncated SVD decomposition. As a result, the
model may utilize spurious features with smaller variance
while neglecting invariant features that exhibit larger dif-
ferences.

6.4. Waterbirds-cf

We consider Waterbirds-cf in this section, similar to the
Waterbirds (Sagawa et al., 2019) in the context of spurious
correlation. In the original Waterbirds dataset, the back-
ground (water or land) is highly correlated with the bird
species (waterbirds or landbirds) in the training set, but this
correlation changes in the test set. The dataset contains
“landbirds on land”, “waterbirds on water”, “landbirds on
water” and “waterbird on land” as training domains with
3498, 1057, 184, 56 training samples respectively. In this
4795 training samples, background is highly correlated to
the objects, and only 240 out of 4795 samples are from
the minority groups (“landbird on water”, “waterbird on
land”). The background here is the spurious features. To
evaluate our NCM (5), we modified all the 240 minor group
samples in the original dataset to estimated CF samples cor-
responding to 240 random samples from majority groups
, estimated by samples in the majority groups. (See Ap-
pendix C.1 for details of data construction.)

(i) The results in Table 3 show that our method with es-
timated CF pairs achieves 86.0% accuracy, significantly
outperforming ERM (raw CLIP) and other baseline meth-
ods with CLIP on oracle validation. It also achieves
81.2% accuracy using validation from the in-domain test
set, continually outperforming CLIP, the best among all
baselines, by 3.1% (ii) Further, note that the quality of
the pairs significantly affects the model’s performance on
this dataset. When using random matching or 1-nearest-
neighbor matching, the model’s performance drops signif-
icantly compared to the CLIP baseline, showing the pairs
are damaging instead of helping the model performance. .
Our theory suggests that the model can only find the cor-
rect invariant feature space when the spurious feature dif-
ference gap is larger that of the invariant features. In the
Waterbirds dataset, which contains versatile invariant fea-
tures, random pairing or nearest-neighbor pairing results
in a large difference in invariant features. This contrasts
with ColoredMNIST, where the invariant features are in-
herently similar, leading to similar performance across dif-
ferent pairing methods.
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Figure 4. In-domain test and worst-group accuracy with changing
hyperparameter r. on CLIP pretrained model. In-domain accuracy
remains stable for small values of r, but drops when r ≥ 128 ap-
proximately. In contrast, worst-group accuracy initially increases
and then decreases as r grows.

0 1000 2000 3000 4000
num of iterations

0.5

0.6

0.7

i.i
.d

. a
cc

ur
ac

y
0 1000 2000 3000 4000

num of iterations

D
G

 a
cc

ur
ac

y

32 pairs 64 pairs 128 pairs 256 pairs 512 pairs

Figure 5. The number of counterfactuals vs. DG accuracy on Col-
oredMNIST using the CLIP + Linear model.

6.5. Ablation Study

Sensitivity on truncated SVD parameter r. We em-
pirically evaluate the trade-off effect of the hyperparame-
ter r on model performance during linear probing on the
Waterbirds-CF dataset (cf. Figure 4), thus validating Theo-
rem 3 comment (iii): accuracy trade-off induced by r. This
pattern reflects the model’s shifting reliance from spurious
to invariant features: when r is too small, spurious correla-
tions dominate, resulting in high in-domain but low worst-
group performance. As r increases and suppresses these
spurious features, worst-group accuracy improves. How-
ever, beyond a certain point, further increases in r begin to
remove invariant features as well, leading to a decline in
both metrics.

Sensitivity on the number of CF Pairs. We evaluate the
number of counterfactual pairs needed on ColoredMNIST
dataset. The results show that with 32 counterfactual pairs,
the number of pairs is insufficient for the model to elim-
inate spurious features, leading to spurious correlation (as
indicated by an in-domain accuracy over 75%, meaning the
classification relies on spurious features). However, when
using 128 or 256 counterfactual pairs, the performance in-
creases significantly and remains stable compared to the 32
counterfactual pairs.

11



From Invariant Representations to Invariant Data

Table 4. Main Results on PACS

In-domain Validation Oracle Validation
A C P S Avg A C P S Avg

ERM (CLIP) 0.924 0.968 0.996 0.859 0.937 0.924 0.968 0.996 0.859 0.937
IRM 0.938 0.976 0.996 0.840 0.938 0.941 0.976 0.996 0.845 0.940
REx 0.953 0.963 0.993 0.836 0.936 0.953 0.975 0.996 0.845 0.942
GroupDRO 0.903 0.963 0.996 0.873 0.934 0.941 0.975 0.996 0.843 0.939
Fish 0.936 0.973 0.996 0.837 0.936 0.936 0.973 0.996 0.837 0.936
SWAD 0.941 0.976 0.996 0.838 0.938 0.941 0.977 0.996 0.838 0.938
LISA 0.926 0.997 0.848 0.937 0.940 0.997 0.864 0.946
MatchDG w. rand. 0.412 0.509 0.316 0.749 0.497 0.454 0.509 0.358 0.749 0.518
MatchDG w. 1NN. 0.971 0.995 0.880 0.973 0.996

NCM w. rand. 0.591 0.609 0.577 0.833 0.653 0.592 0.625 0.583 0.843 0.661
NCM w. 1NN. 0.957 0.974 0.974 0.885

0.978 0.983

0.964 0.953 0.964 0.887 0.955

0.998 0.882 0.953 0.964 0.998 0.955

7. Conclusion and Discussion
In this work, we tackle spurious correlation from a data-
centric perspective and show that introducing (noisy) coun-
terfactual pairs during training can enhance model robust-
ness. This aligns with long-standing machine learning
practices, where supervised learning uses labels to encode
target concepts without formal definitions to help the model
focus on the important features. Similarly, counterfactuals
help capture spurious correlations implicitly without for-
mal definition to help the model avoid spurious features.

One challenge of our method is obtaining counterfactual
pairs. While straightforward in tasks like object classifi-
cation (e.g., using image editing for spurious features, as
shown in the Waterbirds dataset), it is more complex in
fields like medical imaging, requiring expert involvement.
However, experts can now help by creating or validating
a few high-quality counterfactuals to improve robustness
suggested by our findings.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Fatemeh Azimi, Sebastian Palacio, Federico Raue, Jörn
Hees, Luca Bertinetto, and Andreas Dengel. Self-
supervised test-time adaptation on video data. In Pro-
ceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 3439–3448, 2022.

Ruqi Bai, Saurabh Bagchi, and David I. Inouye. Bench-
marking algorithms for federated domain generaliza-
tion. In The Twelfth International Conference on
Learning Representations, 2024. URL https://
openreview.net/forum?id=wprSv7ichW.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains.
Machine learning, 79:151–175, 2010.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce
Lee, Yufei Guo, et al. Improving image generation with
better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan,
Gyemin Lee, and Clayton Scott. Domain generalization
by marginal transfer learning. Journal of machine learn-
ing research, 22(2):1–55, 2021.

12

https://openreview.net/forum?id=wprSv7ichW
https://openreview.net/forum?id=wprSv7ichW


From Invariant Representations to Invariant Data

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, et al.
Spectral methods for data science: A statistical perspec-
tive. Foundations and Trends® in Machine Learning, 14
(5):566–806, 2021.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified gen-
erative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
8789–8797, 2018.
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