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Abstract

Distribution matching (DM) is a versatile domain-
invariant representation learning technique that
has been applied to tasks such as fair classifica-
tion, domain adaptation, and domain translation.
Non-parametric DM methods struggle with scala-
bility and adversarial DM approaches suffer from
instability and mode collapse. While likelihood-
based methods are a promising alternative, they
often impose unnecessary biases through fixed
priors or require explicit density models (e.g.,
flows) that can be challenging to train. We ad-
dress this limitation by introducing a novel ap-
proach to training likelihood-based DM using
expressive score-based prior distributions. Our
key insight is that gradient-based DM training
only requires the prior’s score function—not its
density—allowing us to train the prior via de-
noising score matching. This approach elimi-
nates biases from fixed priors (e.g., in VAEs), en-
abling more effective use of geometry-preserving
regularization, while avoiding the challenge of
learning an explicit prior density model (e.g.,
a flow-based prior). Our method also demon-
strates better stability and computational effi-
ciency compared to other diffusion-based priors
(e.g., LSGM). Furthermore, experiments demon-
strate superior performance across multiple tasks,
establishing our score-based method as a stable
and effective approach to distribution matching.
Source code available at https://github.
com/inouye-lab/SAUB.
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1. Introduction
As machine learning (ML) continues to advance, trustwor-
thy ML systems not only require impressive performance
but also properties such as fairness, robustness, causality,
and explainability. While scaling data and models can im-
prove performance (Kaplan et al., 2020), simple scaling
may not address these issues. For example, historical bias
or imbalanced data can cause even well-trained models to
produce unfair outcomes, requiring additional constraints
to mitigate such biases. Distribution matching (DM), also
known as distribution alignment or domain-invariant rep-
resentation learning, has emerged as a promising approach
to address these challenges. By minimizing the divergence
between latent representations, distribution matching can
introduce additional objectives to ML systems, enabling
them to learn representations that are fair, robust, and causal.
This approach has been successfully applied to a wide range
of problems, including domain adaptation (Ganin et al.,
2016; Zhao et al., 2018), domain generalization (Muandet
et al., 2013) causal discovery (Spirtes & Zhang, 2016), and
fairness-aware learning (Zemel et al., 2013).

DM methods can be broadly categorized into parametric and
non-parametric approaches. Non-parametric methods, such
as kernel Maximum Mean Discrepancy (MMD)(Louizos
et al., 2015; Zellinger et al., 2017) and Sinkhorn divergence
(Feydy et al., 2019), operate directly on sample distributions
without assuming a specific parametric form. Parametric
DM methods, on the other hand, rely on modeling distri-
butions with explicit parameters and can be further divided
into adversarial and non-adversarial likelihood-based ap-
proaches. Adversarial methods, exemplified by Generative
Adversarial Networks (GANs)(Goodfellow et al., 2014),
frame distribution matching as a minimax game between
a generator and a discriminator. While highly expressive
and capable of capturing complex data distributions, these
methods suffer from well-documented issues such as train-
ing instability, mode collapse, and sensitivity to hyperpa-
rameters(Lucic et al., 2018; Kurach et al., 2019; Farnia &
Ozdaglar, 2020; Nie & Patel, 2020; Wu et al., 2020; Han
et al., 2023). In contrast, likelihood-based approaches lever-
age probabilistic models such as variational autoencoders
(VAEs) (Kingma et al., 2019) or normalizing flows (Papa-
makarios et al., 2021) to match distributions by maximiz-
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ing the likelihood of observed data under the model with
relatively better training stability and ability. However, nor-
malizing flows are restricted by the requirement that the
latent dimension must have the same size as the input di-
mension. This constraint limits their flexibility in modeling
complex latent representations and can hinder their ability
to capture lower-dimensional latent structures effectively
(Cho et al., 2022b). On the other hand, VAEs are valued
for being able to capture meaningful and structured rep-
resentations (Chen et al., 2019; Burgess et al., 2018) in a
lower dimension. Gong et al. (2024) proposed to use VAEs
for DM task but imposed a simple learnable prior distribu-
tion (e.g., Gaussian, Mixture of Gaussian), which aligned
poorly with the true data distribution and consequently led
to suboptimal performance. The need for a more expressive
learnable prior distribution is also important when enforcing
geometry-preserving constraints, as these constraints ensure
that the latent space retains the intrinsic geometry of the
data (Uscidda et al., 2024; Nakagawa et al., 2023; Hahm
et al., 2024; Lee et al., 2022; Horan et al., 2021; Gropp et al.,
2020; Chen et al., 2020) which could facilitate disentan-
gled representations in the latent space and consequently
improving downstream tasks performance.

In order to have expressive prior, our key insight is that,
for gradient-based training, likelihood-based DM methods
do not require computation of the prior density directly.
Instead, they only require the gradient of the log probabil-
ity of the prior distribution—commonly referred to as the
score function. Building on this observation, we propose
a novel approach that models the prior density through its
score function, precisely the computation needed for train-
ing. The score function can be efficiently estimated using
denoising score matching techniques, enabling us to bypass
the challenges associated with learning explicit prior den-
sities. Another crucial insight stems from recognizing that
DM methods do not inherently require generation capabil-
ities; instead, the prior distribution is only used to form
a proper bound for divergence measures during training.
This allows us to model the prior using score-based models,
where sampling the prior is computationally expensive but
score training and inference remain efficient and stable. We
demonstrate through extensive experiments that our sim-
ple yet effective algorithm significantly improves training
stability and achieves superior DM results across various
benchmarks. Finally, our framework can also integrate se-
mantic information from pretrained models, such as CLIP
(Radford et al., 2021), to capture task-relevant features that
reflect higher level semantics. By aligning the latent space
with these semantic relationships, our method can ensure
that the representations are not only geometrically sound but
also contextually meaningful for downstream tasks, such as
classification and domain adaptation.

We summarize our contributions in the field of DM as

follows:

• We introduce the Score Function Substitution (SFS)
trick that computes exact variational encoder gradients
using only the prior’s score function, thereby circum-
venting the need for explicit density evaluation.

• Leveraging SFS, we develop a novel, stable, and effi-
cient alternating optimization algorithm for likelihood-
based DM with expressive score-based priors.

• Our method achieves strong performance across di-
verse downstream tasks, including fair classification,
domain adaptation, and domain translation.

• We further demonstrate that our approach enables the
effective application of geometry-preserving regular-
ization (Nakagawa et al., 2023), yielding additional
performance improvements when a semantically rich
latent space is available for the task.

2. Preliminaries
Variational Alignment Upper Bound (VAUB) The paper
by Gong et al. (2024) presents a novel approach to distri-
bution matching for learning invariant representations. The
author proposes a non-adversarial method based on Vari-
ational Autoencoders (VAEs), called the VAE Alignment
Upper Bound (VAUB). Specifically, they introduce align-
ment upper bounds for distribution matching that generalize
the Jensen-Shannon Divergence (JSD) with VAE-like ob-
jectives. The author formalizes the distribution matching
problem with the following VAUB objective:

VAUB(q(z|x, d)) = min
p(z)

Eq(x,z,d)

[
− log p(x|z, d)

q(z|x, d)p(z)
]
+C,

(1)
where q(z|x, d) is the probabilistic encoder, p(x|z, d) is the
decoder, p(z) is the shared prior, and C is a constant in-
dependent of model parameters. The method ensures that
the distribution matching loss is an upper bound of the
Jensen-Shannon divergence (JSD), up to a constant. This
non-adversarial approach overcomes the instability of ad-
versarial training, offering a robust, stable alternative for
distribution matching in fairness, domain adaptation, and
robustness applications. Empirical results show that VAUB
and its variants outperform traditional adversarial methods,
particularly in cases where model invertibility and dimen-
sionality reduction are required.
Score-based Models Score-based models (Song et al.,
2021c) are a class of diffusion models that learn to gener-
ate data by denoising noisy samples through iterative re-
finement. Rather than directly modeling the data distribu-
tion p(x), as done in many traditional generative models,
score-based models focus on learning the gradient of the
log-probability density of the target distribution, known as
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the score function. To learn the score function, (Vincent,
2011) and (Song & Ermon, 2019) propose training on the
Denoising Score Matching (DSM) objective. Essentially,
data points x are perturbed with various levels of Gaussian
noise, resulting in noisy observations x̃. The score model is
then trained to match the score of the perturbed distribution.
The DSM objective is defined as follows:

DSM = 1
2LE

[
∥sϕ(x̃, σi) − ∇x̃ log qσi(x̃|x)∥2

2

]
, (2)

where qσi(x̃|x) represents the perturbed data distribution of
pdata(x), L is the number of noise scales {σi}Li=1, and the
expectation is over the distribution pdata(x)q(σi)qσi(x̃|x).
When the optimal score network s∗

ϕ is found, s∗
ϕ(x) =

∇x log qσ(x) almost surely ((Vincent, 2011),(Song & Er-
mon, 2019)) and approximates ∇x log pdata(x) when the
noise is small (σ ≈ 0). Since score-based models learn the
gradient of the distribution rather than the distribution itself,
generating samples involves multiple iterative refinement
steps. These steps typically leverage techniques such as
Langevin dynamics, which iteratively updates the sample
using the learned score function (Song & Ermon, 2019).

Gromov-Wasserstein Distance The Optimal Transport
(OT) problem seeks the most efficient way to transform one
probability distribution into another, minimizing transport
cost. Given two probability distributions µ and ν over metric
spaces (X, dX) and (Z, dz), the OT problem is:

inf
π∈Π(µ,ν)

E(x,z)∼π[d(x, z)] (3)

where Π(µ, ν) is the set of couplings with marginals µ
and ν, and d(x, z) is a cost function, often the Euclidean
distance. The Gromov-Wasserstein (GW) distance extends
OT to compare distributions on different metric spaces by
preserving their relative structures, not absolute distances.
For distributions µ and ν over spaces (X, dX) and (Z, dz),
the GW distance is:

GW(µ, ν)
= inf
π∈Π(µ,ν)

E(x,z)∼π,(x′,z′)∼π[∥dX(x, x′) − dZ(z, z′)∥2]

= inf
π∈Π(µ,ν)

GWCost(π(x, z)) (4)

3. Methodology
3.1. Training Objective for Distribution Matching with

a Score-based Prior
We aim to optimize VAUB (Gong et al., 2024) as our distri-
bution matching objective:

LDM = LVAUB =
∑
d

1
β
Eqθ

[
− log pφ(x|z, d)

qθ(z|x, d)βQψ(z)β
]
,

where d represents the domain ∀d ∈ [1, · · · , D] (e.g., dif-
ferent class datasets or modalities), and β ∈ [0, 1] acts as a
regularizer controlling the mutual information between the
latent variable z and the data x. qθ(z|x, d) and pφ(x|z, d)
are the d-th domain probabilistic encoder and decoder, re-
spectively, and Qψ(z) is a prior distribution that is invariant
to domains (Gong et al., 2024). For notational simplicity,
we ignore the regularization loss and we assume β = 1.
We can split the VAUB objective into three components:
reconstruction loss, entropy loss, and cross entropy loss.

LVAUB ≜
∑
d

{
Eqθ [− log pφ(x|z, d)]︸ ︷︷ ︸

reconstruction term

(5)

− Eqθ [− log qθ(z|x, d)]︸ ︷︷ ︸
entropy term

+Eqθ [− logQψ(z)]︸ ︷︷ ︸
cross entropy term

}
.

The prior distribution in the cross-entropy term aligns with
the encoder’s posterior but is often restricted to simple forms
like Gaussians or Gaussian mixtures (Gong et al., 2024),
which can distort the encoder’s transformation function (Us-
cidda et al., 2024). To address this, we propose an expres-
sive, learnable prior that adaptively mitigates such distor-
tions, better capturing the underlying data structure.

Modeling an arbitrary probabilistic density function (PDF)
is computationally expensive due to the intractability of
the normalization constant. Therefore, instead of directly
modeling the density Q(z), we propose to indirectly pa-
rameterize the prior via its score function ∇z logQ(z).
While this avoids direct density estimation, the score
function alone makes log-likelihood computations diffi-
cult. Weighted score matching losses only approximate
maximum-likelihood estimation (MLE), and directly opti-
mizing MLE using the flow interpretation becomes com-
putationally prohibitive as it requires solving an ODE at
each step (Song et al., 2021a). Unlike VAEs, where efficient
sampling from the prior is critical, we demonstrate that the
distribution matching objective with a score-based prior can
be optimized without costly sampling or computing log-
likelihood. By reformulating the cross-entropy term as a
gradient with respect to the encoder parameters θ, we de-
rive an equivalent expression that retains the same gradient
value. This allows us to decouple score function training
from the encoder and compute gradients with a single evalu-
ation of the score function. We call this the Score Function
Substitution (SFS) trick.

Proposition 3.1 (Score Function Substitution (SFS) Trick).
If qθ(z|x) is the posterior distribution parameterized by θ,
and Qψ(z) is the prior distribution parameterized by ψ,
then the gradient of the cross entropy term can be written
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as:

∇θEzθ∼qθ(z|x) [− logQψ(zθ)] (6)

= ∇θEzθ∼qθ(z|x)

[
−

(
∇z̄ logQψ(z̄)

∣∣
z̄=zθ︸ ︷︷ ︸

constant w.r.t. θ

)⊤
zθ

]
,

where the notation of zθ emphasizes its dependence on θ
and ·|z̄=zθ denotes that while z̄ is equal to zθ, it is treated
as a constant with respect to θ.

The full proof can be seen in Appendix A. In practice, Eqn. 6
detaches posterior samples from the computational graph,
enabling efficient gradient computation without additional
backpropagation dependencies. Details are provided in the
next section. Following Proposition 3.1, we propose the
score-based prior alignment upper bound (SAUB) objective
defined as follows:

LSAUB ≜
∑
d

{
Ez∼qθ(z|x,d)

[
− log pφ(x|z, d) (7)

+ log qθ(z|x, d) −
(

∇z̄ logQψ(z̄)
∣∣
z̄=z

)⊤
z
]}

.

Since our new loss does not affect terms related to φ, and
by Proposition 3.1, we have ∇θ,φLVAUB = ∇θ,φLSAUB—
though we note that ∇ψLVAUB and ∇ψLSAUB are not equal
in general. In the next section, we show how to train all pa-
rameters by approximating a bi-level optimization problem.

3.2. Deriving an Alternating Algorithm with Learnable
Score-Based Priors

Leveraging SFS, we now develop a novel alternating op-
timization algorithm for score-based prior distributions.
Specifically, we parametrize the prior through its score
function, denoted Sψ(·), instead of it’s density Qψ(·).
Given a fixed prior score function, the SAUB objective
allows us to optimize the encoder and decoder parameters
θ and φ (but cannot be used to update the prior because
∇ψLVAUB ̸= ∇ψLSAUB). To update the prior, we can use
a denoising score-matching objective to match the prior with
the encoder’s marginal posterior to improve the DM varia-
tional bound (Cho et al., 2022a; Gong et al., 2024)—indeed,
when the prior matches the marginal posterior, the bound
becomes tight. Thus, our global problem can be formulated
as a bi-level optimization problem where the upper level
is the SAUB objective and the lower level is the denoising
score matching objective:

min
θ,φ

∑
d

{
Eqθ

[
− log pφ(x|z, d) + log qθ(z|x, d)

−
(
Sψ∗(z∗, σ0 ≈ 0)

∣∣∣
z∗=(z+σ0ϵ)

)⊤
z
]}
, (8)

s.t. ψ∗ ∈ arg min
ψ

Eqθ
[
∥Sψ(z̃, σi) − ∇z̃ log qσi(z̃|z)∥2

2

]
,

(9)

where the expectation in (8) is over the joint distribu-
tion of observed and latent variables, i.e., qθ(z, x, d) ≜
pdata(x, d)qθ(z|x, d), and the expectation in (9) is over
the marginal (noisy) posterior distribution qθ(z, z̃, σi) ≜
Epdata(x,d)[qθ(z|x, d)q(σi)qσi(z̃|z)]. If the lower-level opti-
mization in Eqn. 9 is solved perfectly, then the upper bound
of likelihood represented by SAUB in Eqn. 8 will be tight.
While there are many possible approaches to bi-level opti-
mization, we choose the simple alternating approach (Xiao
et al., 2023; Chen et al., 2021) between the top-level and
the bottom-level problems, while holding the parameters of
the other optimization problem fixed. Because this simple
alternating approach worked well in our experiments, we
leave the exploration of more complex bi-level optimization
approaches to future work.

During VAE training, the score model is conditioned on the
smallest noise level, σ0 = σmin, to approximate the clean
score function of the marginal posterior. As previously men-
tioned, the output of the score model is detached to prevent
gradient flow, ensuring memory-efficient optimization by
focusing solely on the encoder and decoder parameters with-
out tracking the score model’s computational graph. After
optimizing the encoder and decoder, these networks are
fixed while the score model is updated using Eqn. 9. Theo-
retically, if the score model is sufficiently trained enough to
fully capture latent distribution, it could be optimized using
only small noise levels. However, extensive score model
updates after each VAE step are computationally expensive.
To mitigate this, we reduce score model updates and train
with a larger maximum noise level, enhancing stability when
the latent representation becomes out-of-distribution (OOD).
The complete training process is outlined in Appendix B.
We also listed the stabilization and optimization techniques
in Appendix C.

3.3. Comparison with Latent Score-Based Generative
Models

Latent Score-Based Generative Models (LSGM) (Vahdat
et al., 2021) provide a powerful framework that integrates la-
tent variable models with score-based generative modeling,
leveraging diffusion processes to enhance data generation
quality. A key innovation in LSGM is the introduction of
a learnable neural network prior, which replaces the tra-
ditional cross-entropy term in the Evidence Lower Bound
(ELBO) with score-based terms approximated via a diffu-
sion model. This idea of incorporating a score-based prior is
similar to our method, which also leverages score functions
for the prior.

A crucial challenge of LSGM is the instability associated
with computing the Jacobian term when backpropagating
through the U-Net of the diffusion model. Computing this
Jacobian term is analogous to approximating the Hessian
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Figure 1. The reconstruction loss and negative log-likelihood are presented on a logarithmic scale for improved visualization. The
experiment uses consistent hyperparameters (β = 0.1), an identical VAE architecture, and the same pretrained score model.

of the data distribution, which has been empirically shown
to be unstable at low noise levels (Poole et al., 2022). Con-
versely, our Score Function Substitution (SFS) trick elimi-
nates the need to backpropagate through the diffusion model,
enabling stable optimization without explicitly computing
the Jacobian. In addition, the LSGM loss requires approxi-
mating an expectation over noise levels with a finite number
of Monte Carlo (MC) samples (often a single one). We
hypothesize that this MC approximation also contributes
to the instability of LSGM. For further details of gradient
comparison, please refer to Appendix F.

Comparative Stability: SFS vs. LSGM We assess sta-
bility by measuring the posterior’s negative log-likelihood
(NLL) under a fixed Gaussian-mixture prior. The prior and
target distributions are illustrated in Fig. 6. Unlike standard
training, which updates encoder, decoder, and prior parame-
ters, our approach freezes the prior and uses a score model
pre-trained on the defined prior, updating only the encoder
and decoder. The same pre-trained score model is used for
both SAUB and LSGM to ensure a fair comparison. Per-
formance is evaluated under a score model trained on four
minimum noise levels, σmin ∈ 0.001, 0.01, 0.1, 0.2, with
σmax = 1 fixed. While lower noise levels should improve
likelihood estimation, as the score model more precisely

approximates the true score function, LSGM requires back-
propagation through the score model’s U-Net, which causes
instability at low noise levels due to inaccurate gradients.
As shown in Fig. 1, when σmin = 0.001, LSGM exhibits
catastrophic instability, with diverging NLL and spikes in
reconstruction loss. At σmin = 0.1 and σmin = 0.2, LSGM
performs better in terms of both reconstruction loss and
NLL than at σmin = 0.01, indicating that unstable gradi-
ents at lower noise levels negatively impacts prior matching.
This is concerning since low noise levels, like σmin = 0.01,
are commonly used in practice. In contrast, the SFS trick
shows greater stability across noise levels. At σmin = 0.01,
the NLL is better than at σmin = 0.1, which outperforms
σmin = 0.2, suggesting that SFS ensures more reliable gra-
dients when the score model is trained on lower noise levels.
While both LSGM and SAUB degrade at σmin = 0.001,
SFS stabilizes and achieves a better NLL than LSGM at
σmin = 0.01, demonstrating its robustness in handling small
noise configurations.

3.4. Semantic Preservation (SP) in Latent
Representations via GW Inspired Constraint

Given an expressive score-based prior, we can now investi-
gate how to incorporate the geometry-preserving regulariza-
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tion introduced by Nakagawa et al. (2023) without inducing
the unnecessary biases of fixed priors on the latent distri-
bution. Specifically, Nakagawa et al. (2023) introduces the
GW metric LGW in an autoencoding framework, and we
adopt this regularization in a similar manner:

Ltotal = LDM + λGWLGW(qθ(z|x)) (10)

LGW(qθ(z|x)) ≜ GWCost(π = pdata(x)qθ(z|x)) (11)

= E
[

∥dX(x, x′) − dZ(z, z′)∥2
2

]
(12)

where pdata represents the data distribution, dX and dZ are
the predefined metric spaces for the observed and latent
spaces, respectively, and λGW controls the importance of the
structural preservation loss. LDM(qθ(z|x)) represents the
distribution matching objective with qθ(z|x) as the encoder,
and LGW(qθ(z|x)) is the structural preservation loss where
pdata is the data distribution, dX and dZ are the metric spaces
for the observed and latent spaces, respectively, and λGW
controls the GW loss LGW(qθ(z|x)). LDM(qθ(z|x)) is the
distribution matching objective with encoder qθ(z|x).

Selection of Metric Space and Distance Functions The
GW framework’s key strength lies in its ability to compare
distributions across diverse metric spaces, where the choice
of metric significantly impacts comparison quality. In low-
dimensional datasets like Shape3D (Kim & Mnih, 2018)
and dSprites (Matthey et al., 2017), Euclidean pixel-level
distances align well with semantic differences, leading prior
works (Nakagawa et al., 2023; Uscidda et al., 2024) to use
L2 or cosine distances for isometric mappings. However,
this breaks down in high-dimensional data, like real-world
images, which lie on lower-dimensional manifolds. The
curse of dimensionality causes traditional metrics, such as
pixel-wise distances, to lose effectiveness as dimensionality
increases. Recent advancements in vision-language models
like CLIP (Radford et al., 2021) have shown their ability to
learn robust and expressive image representations by train-
ing on diverse data distributions (Fang et al., 2022). Studies
(Yun et al., 2023) demonstrate that CLIP captures meaning-
ful semantic relationships, even learning primitive concepts.
Therefore, we propose using the semantic embedding space
of pre-trained CLIP models as a more effective metric for
computing distances between datasets, which we define as
the Semantic Preservation (SP) loss. For a detailed evalu-
ation of the improvements from using CLIP embeddings,
please refer to the Appendix G, which includes demonstra-
tions and additional results. In the following section, we
will denote the Gromov-Wasserstein constraint as GW-EP,
and GW-SP to differentiate the metric space we used for
Gromov-Wasserstein constraint as Euclidean metric space
Preservation (EP) and Semantic Structural Preservation (SP)
respectively.

4. Related Works
Learnable Priors Most variational autoencoders (VAEs)
typically use simple Gaussian priors due to the computa-
tional challenges of optimizing more expressive priors and
the lack of closed-form solutions for their objectives. Early
efforts to address this, such as Adversarial Autoencoders
(AAEs) (Makhzani et al., 2016), employed adversarial net-
works to learn flexible priors, resulting in smoother and
more complete latent manifolds.

Subsequent research (Hoffman & Johnson, 2016; Johnson
et al., 2017) highlighted that simple priors can lead to over-
regularized and less informative latent spaces, while (Tom-
czak & Welling, 2018) empirically showed that more ex-
pressive priors improve generative quality, with significant
gains in log-likelihood. More recently, Latent Score-based
Generative Models (LSGM) (Vahdat et al., 2021) introduced
score-based priors, leveraging a denoising score-matching
objective to learn arbitrary posterior distributions. This
approach enables high-quality image generation while cap-
turing the majority of the data distribution.

Gromov-Wasserstein Based Learning Gromov-
Wasserstein (GW) distance has found numerous ap-
plications in learning problems involving geometric
and structural configuration of objects or distributions.
Moreover, the GW metric has been adopted for mapping
functions in deep neural networks. One of the key benefits
of GW distance is its capacity to compare distributions with
heterogeneous data and/or dimensional discrepancies.

Prior works, such as Truong et al. (2022); Carrasco et al.
(2024), although uses GW distance as part of the loss in the
the objective but is focusing on calculating and minimizing
the GW objective in the embedding space between domains
LOT/GW = OT/GW (zsrc, ztgt). On the other hand, Us-
cidda et al. (2024); Nakagawa et al. (2023) defines the GW
objective as being calculated between the data dimension
and the embedding dimension.

5. Experiments
In this section, we evaluate the effectiveness of our proposed
VAUB with a score-based prior on several tasks. We conduct
experiments on synthetic data, domain adaptation, multi-
domain matching, fair classification, and domain translation.
For each experiment, we compare our methods to VAUB
and other baselines and evaluate performance using various
metrics.

5.1. Improving Latent Space Separation by Using
Score-based Prior

The primary objective of this experiment is to demonstrate
the performance of different prior distribution models within
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Figure 2. The dataset consists of two domains: Domain 1 (left nested ’D-shaped’) and Domain 2 (right flipped ’D-shaped’). In each
domain, the outer ’D’ corresponds to Label 1, and the inner ’D’ to Label 2. The shared latent spaces are visualized for models trained
with varying data sizes (n = 20, 100, 500 samples) using Gaussian(Kingma et al., 2019), Mixture of Gaussians(Gong et al., 2024),
Vampprior(Tomczak & Welling, 2018), LSGM,(Song et al., 2021c) and our score-based model (columns). Legends follow the format
D{domain_index}_L{label_index}

the VAUB framework. Additionally, we examine the ef-
fect of varying the number of samples used during train-
ing, specifically considering scenarios with limited dataset
availability. To achieve this, we create a synthetic nested
D-shaped dataset consists of two domains and two labels,
as illustrated in Fig. 2. The aim is to learn a shared latent
representation across two domains and evaluate the degree
of separation between class labels within this shared la-
tent space. Since downstream tasks rely on these shared
latent representations, better separation of class labels in
the latent space naturally leads to improved classification
performance. This setup draws an analogy to domain adap-
tation tasks, where the quality of separation in the latent
representation relative to the label space plays a critical role
in determining downstream classification outcomes.

In this experiment, we control the total number of data sam-
ples generated for the dataset, and compare the model’s
performance using five types of priors: Gaussian prior, Mix-
ture of Gaussian Prior (MoG), Vampprior, and a score-based
prior trained with LSGM, and ours (SFS method). Consider-
ing the strong relations between point-wise distance and the
label information of the dataset, we use GW-EP to compute
the constraint loss in both in the data domain and the latent
domain. This helps to better visually reflect the underly-
ing structure and separations in the latent space. As shown
in Fig. 3, this performance improvement is evident in the
latent space: the nested D structure is well-preserved un-

der transformation with score-based prior methods (LSGM
and ours), resulting in well-separated latent representations
across different classes. This holds consistently true for
varying numbers of data points, from as low as 20 samples
to higher counts. On the other hand, the Gaussian prior,
MoG and Vampprior only achieves 90% of separation in the
latent space when the number of data samples is sufficiently
large (n = 100 for MoG and Vampprior prior and n = 20
for Gaussian prior), allowing the inner and outer classes
to have a classifier bound supported by enough data points
as shown in Fig. 3. This finding is especially relevant for
real-world datasets, where the original data dimensionality
can easily reach up to tens of thousands; while in this ex-
periment, we worked with only a two-dimensional dataset,
yet the Gaussian, MoG and Vampprior required more than
hundreds of samples to achieve effective latent separation,
whereas the score-based prior (LSGM and SFS) succeeded
with as few as 20 samples.

5.2. Improving the Tradeoff between Accuracy and
Parity in Fair Classification

For this experiment, we apply our model to the well-known
Adult dataset, derived from the 1994 census, which contains
30K training samples and 15K test samples. The target task
is to predict whether an individual’s income exceeds $50K,
with gender (a binary attribute in this case) considered as
the protected attribute.
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Figure 3. This figure shows label separation in the latent space
under varying sample sizes and prior configurations, quantified
by AUROC scores from the prediction of support vector classifier.
Higher scores indicate better separation. Details of the metric are
described in the appendix.

We adopt the same preprocessing steps in Zhao et al. (2020),
and the encoder and classifier architectures are consistent
with those in Gupta et al. (2021). We additionally adapt
GW-EP as our constraint loss considering the lack of seman-
tic models in tabular dataset such as Adult dataset. Please
refer to Appendix I for more detailed architecture setup. For
comparison, we benchmark our model against three non-
adversarial models FCRL(Gupta et al., 2021), CVIB(Moyer
et al., 2018), VAUB(Gong et al., 2024) and one adversar-
ial model LAFTR-DP(Madras et al., 2018) and one extra
baseline ‘Unfair Classifier’ which is obtained to serve as a
baseline, computed by training the classifier directly on the
original dataset.

As illustrated in Fig. 4, our method not only retains the
advantages of the SAUB method, achieving near-zero demo-
graphic parity (DP) gap while maintaining accuracy, but it
also improves accuracy across the board under the same DP
gap comparing to other methods. We attribute this improve-
ment largely to the introduction of the score-based prior,
which potentially allows for better semantic preservation in
the latent space, enhancing both accuracy and fairness.

We further provide comprehensive ablation studies and com-
putational efficiency analyses (detailed in Appendix N) vali-
date the effectiveness of our GW regularization component
and demonstrate significant computational advantages over
LSGM, particularly for high-dimensional applications.

5.3. Domain Adaptation

We evaluate our method on the MNIST-USPS domain adap-
tation task, transferring knowledge from the labeled MNIST
(70,000 images) to the unlabeled USPS (9,298 images)

Figure 4. Demographic Parity gap (∆DP ) vs. Accuracy trade-off
for UCI Adult dataset. Lower ∆DP is better, and higher Accuracy
is better.

Table 1. Domain-adaptation accuracy (%).

Model MNIST → USPS USPS → MNIST

ADDA 89.4 90.1
DANN 77.1 73.0
VAUB 40.7 45.3
Ours w/o GW 88.1 85.5
Ours w/ GW-EP 91.4 92.7
Ours w/ GW-SP 96.1 97.4

without using target labels. We compare our SAUB method
(with and without structure-preserving constraints) against
baseline DA methods: ADDA (Zhao et al., 2018), DANN
(Ganin et al., 2016), and VAUB (Gong et al., 2024). All
methods use the same encoder and classifier architecture
for fairness, with structure-preserving constraints applied
using L2 distance in Euclidean space (GW-EP) and CLIP
embedding (GW-SP).

As shown in Table 1, our method outperforms the baselines
in both directions. Unlike ADDA and DANN, which require
joint classifier and encoder training, our approach allows for
classifier training after the encoder is learned, simplifying
domain adaptation. Additionally, the inclusion of a decoder
enables our model to naturally adapt to domain translation
tasks, as demonstrated in Fig. 15. We additionally conduct
novel experiments to assess the generalizability and robust-
ness of our model with limited source-labeled data, detailed
in Appendix D. Additionally, image translation results be-
tween MNIST and USPS are presented in Appendix K.
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Figure 5. All models use the same architecture. Refer to Ap-
pendix I for details on the neural network and CLIP model. Apply-
ing GW loss in the CLIP semantic space shows superior semantic
preservation in both (a) and (b). The samples are selectively chosen
to represent diverse variations; random samples are in Appendix M.

We conduct domain translation experiments on the CelebA
dataset, translating images of females with blonde hair to
black hair and vice versa. We compare three settings: GW
loss in semantic space, GW loss in Euclidean space, and
no GW loss. This comparison shows that GW loss in the
semantic space better preserves semantic features, while Eu-
clidean space GW loss is less effective in high-dimensional
settings. We note that achieving state-of-the-art image trans-
lation performance is not our primary objective, since we
employ relatively simple networks for both the VAE and
diffusion model (see Appendix I). Instead, this experiment
demonstrates our model’s versatility across tasks and serves
as a proof of concept. We believe that with state-of-the-art
architecture and engineering design our approach will be
competitive for domain translation and other imaging tasks,
which we leave to future work.

For quantitative evaluation of semantic preservation, we
utilize Structural Similarity Index Metric (SSIM), Learned
Perceptual Image Patch Similarity (LPIPS), and image re-
trieval accuracy as our metrics. The models, trained for
1,500 epochs, for image retrieval translate images from a
domain of 100 females with black hair to a domain of 100

Table 2. Retrieval and perceptual similarity metrics. Higher SSIM
(↑) and lower LPIPS (↓) indicate better structural and perceptual
similarity.

Image Retrieval (%) Perceptual Similarity
Task/Model Top-1 Top-5 Top-10 Top-20 SSIM (↑) LPIPS (↓)

Black-to-Blonde Hair
No GW 5.0 ± 1.4 14.6 ± 2.4 24.4 ± 4.0 40.0 ± 3.5 0.393 0.431
GW-EP 4.0 ± 1.0 11.6 ± 2.2 22.0 ± 2.9 35.0 ± 2.6 0.428 0.371
GW-SP 9.0 ± 1.6 27.8 ± 3.1 39.2 ± 4.2 59.0 ± 2.9 0.542 0.285
Blonde-to-Black Hair
No GW 3.4 ± 1.7 10.8 ± 3.3 19.0 ± 2.9 33.4 ± 3.9 0.393 0.380
GW-EP 2.0 ± 0.7 9.2 ± 1.8 15.8 ± 2.6 30.4 ± 3.1 0.426 0.385
GW-SP 4.8 ± 2.3 18.8 ± 3.4 28.6 ± 4.1 46.2 ± 2.5 0.532 0.282

females with blonde hair and vice versa. For each translated
image, we compute the cosine similarity with all translated
images in the target domain using CLIP embeddings. To
ensure fairness, we use a different pretrained CLIP model
for evaluation and for training GW-SP; for more informa-
tion, see Appendix I. This process is repeated five times
with randomly selected datasets to account for variability
in the data. The experiment aims to measure how well
the translated images preserve their semantic content. We
compute the top-k accuracy, where the task is to retrieve
the correct translated image from the set of all translated
images. For SSIM and LPIPS, we randomly translate 1,000
images and compare their similarity metrics to quantify
structural and perceptual consistency. This bidirectional
evaluation black-to-blonde and blonde-to-black ensures ro-
bustness and highlights the model’s ability to maintain se-
mantic consistency during translation. GW-SP in semantic
space consistently improves accuracy for all metrics. No-
tably, GW-EP performs worse than no GW loss for image
retrieval. The domain translation images in Appendix M
confirm that models with semantic space GW loss better
preserve semantic features like hairstyle, smile, and facial
structure, demonstrating its advantage. For additional ex-
periments, we provide image translations between male and
female subjects on the FairFace dataset in Appendix L for
interested readers.

6. Conclusion
In conclusion, we introduce score-based priors and structure-
preserving constraints to address the limitations of tradi-
tional distribution matching methods. Our approach uses
score models to capture complex data distributions while
maintaining geometric consistency. By applying Gromov-
Wasserstein constraints in the semantic CLIP embedding
space, we preserve meaningful relationships without the
computational cost of expressive priors. Our experiments
demonstrate improved performance in tasks like fair classi-
fication, domain adaptation, and domain translation.
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A. Proof of Proposition 3.1
Proposition 1 (Score Function Substitution (SFS) Trick)

If qθ(z|x) is the posterior distribution parameterized by θ, and Qψ(z) is the prior distribution parameterized by ψ, then the
gradient of the cross entropy term can be written as:

∇θEzθ∼qθ(z|x) [− logQψ(zθ)] = ∇θEzθ∼qθ(z|x)
[

− zTθ ∇z̄ logQψ(z̄)
∣∣
z̄=zθ︸ ︷︷ ︸

constant w.r.t. θ

]
, (13)

where the notation of zθ emphasizes its dependence on θ and ·|z̄=zθ denotes that while z̄ is equal to zθ, it is treated as a
constant with respect to θ.

Proof.

∇θEzθ∼qθ(z|x) [− logQψ(zθ)] (14)
= ∇θEϵ∼p(ϵ) [− logQψ(gθ(ϵ))] (Reparameterization trick: zθ = gθ(ϵ)) (15)
= Eϵ∼p(ϵ) [∇θ (− logQψ(gθ(ϵ)))] (16)

= Eϵ∼p(ϵ)

[
∂gθ(ϵ)
∂θ

⊤
∂ logQψ(z̄)

∂z̄

∣∣∣
z̄=gθ(ϵ)

]
(Chain rule: differentiating at gθ(ϵ)) (17)

= Eϵ∼p(ϵ)

[
∇θgθ(ϵ)⊤ ∂ logQψ(z̄)

∂z̄

∣∣∣
z̄=gθ(ϵ)

]
(Simplify notation) (18)

= Eϵ∼p(ϵ)∇θ

[(
∂ logQψ(z̄)

∂z̄

∣∣∣
z̄=gθ(ϵ)

)⊤

gθ(ϵ)
]

(Move ∇θ outside) (19)

= ∇θEϵ∼p(ϵ)

[
−

(
∇z̄ logQψ(gθ(ϵ))

∣∣∣
z̄=gθ(ϵ)

)⊤

gθ(ϵ)
]

(Gradient applied to parts dependent on θ) (20)

= ∇θEzθ∼qθ(z|x)

[
−

(
∇z̄ logQψ(zθ)

∣∣∣
z̄=zθ

)⊤

zθ

]
(Change back to zθ after pulling out gradient) (21)

B. Pseudo-code for learning VAUB with Score-Based Prior
See Alg. 1.
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Algorithm 1 Training VAUB with Score-based Prior (Alternating Optimization)

1: Input: Data x, domain d, parameters {θd, φd, ψ}, hyperparameters: noise levels {σmin, σmax}, number of loops L for
score model update

2: Initialize: Parameters of Encoders θ, Decoders φ, and Score model ψ
3: while not converged do
4: Step 1: Update Encoder and Decoder parameters {θ, φ}
5: Draw x, d ∼ pdata(x, d)
6: Draw z ∼ qθ(z|x, d)
7: Compute score using Sψ(z∗, σ = σmin), where z∗ is detached from the computational graph
8: Compute the objective in Equation 8
9: Perform gradient descent to minimize the objective and update {θ, φ}

10: Step 2: Update Score Model parameters ψ
11: for loop = 1 to L do // Number of loops for score model update
12: Draw x, d ∼ pdata(x, d)
13: Draw z ∼ qθ(z|x, d)
14: Draw perturbed latent variable z̃ ∼ qσi(z̃|z), where σi ∈ [σmin, σmax]
15: Compute the DSM loss for the score model in Equation 9
16: Perform gradient descent to minimize the DSM objective and update ψ
17: end for
18: Repeat alternating optimization steps until convergence.
19: end while

C. Stabilization and Optimization Techniques
Several factors, such as interactions between the encoder, decoder, and score model, as well as the iterative nature of the
optimization process, can introduce instability. To mitigate these issues, we implemented stabilization and optimization
techniques to ensure smooth and robust training.

Batch Normalization on Encoder Output (Without Affine Learning) Applying batch normalization to the encoder’s
mean output without affine transformations facilitates smooth transitions in the latent space, acting as a soft distribution
matching mechanism. By centering the mean and mitigating large shifts, it prevents disjoint distributions, allowing the score
model to keep up with the encoder’s updates. This regularization ensures the latent space remains within regions where the
score model is trained, enhancing stability and reducing the risk of divergence.

Gaussian Score Function for Undefined Regions: To further stabilize training, we incorporate a small Gaussian score
function into the score model to handle regions beyond the defined domain of the score function (i.e., outside the maximum
noise level, σmax). Inspired by the mixture neural score function in LSGMs (Vahdat et al., 2021), this approach blends
score functions to address out-of-distribution latent samples. The Gaussian score ensures smooth transitions and prevents
instability in poorly defined areas of the latent space, maintaining robustness even in undertrained regions of the score model.

Weight Initialization and Hyperparameter Tuning: We observed that the initialization of weights significantly impacts
the stability and convergence of our model. Poor initialization can lead to bad alignment. Therefore, grid search was used to
find an optimal weight scale.

D. Limited Source Label for Domain Adaptation
We introduce, to the best of our knowledge, a novel downstream task setup where there is limited labeled data in the source
domain (i.e., 1%, 5%, 10%) and no supervision in the target domain. We apply this setup to the MNIST-to-USPS domain
adaptation task. The objective is to determine how well our model with and without structural preservation can generalize
with limited source supervision.
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E. Prior and Target Distribution for Comparative Stability: SFS vs. LSGM

Figure 6. Target/Prior Distribution for the stability analysis in subsection 3.3. The prior distribution is the target distribution projected
onto the Z-space.

E.1. Results

As shown in Figure Fig. 7, our method without the SP constraint (which is entirely unsupervised in the source domain)
demonstrates remarkable sample efficiency. With as little as 0.04% of the dataset (roughly two images per class), our
method achieves an accuracy of around 40%. By increasing the labeled data to just 0.1% (about five images per class),
the accuracy surpasses 73%. When we introduce the structural preservation constraint, which allows the model to transfer
knowledge from a pretrained model, we observe a significant improvement in performance. With only 0.2% of the labeled
data, the model’s accuracy approaches the performance of models trained on the full dataset. This boost in performance
shows the effectiveness of incorporating semantic information into the latent space, allowing the model to generalize better
with minimal supervision.

The performance gap between models with and without the structural preservation (SP) constraint becomes more evident
through UMAP visualizations of the latent space (Figure Fig. 7). While both methods achieve distribution matching and
show label separation, the model without SP struggles to distinguish structurally similar digits, such as "4" and "9". In
contrast, with the SP constraint, the latent space exhibits clearer, distinct separations, even for similar digits. The semantic
structure injected by the SP constraint leads to more robust and meaningful representations, helping the model better
differentiate between challenging classes. This highlights the effectiveness of the SP constraint in refining latent space
organization.

F. More Detailed Discussion of Gradient Comparison Between LSGM and SFS Trick
Below, we detail the encoder and decoder optimization objectives for LSGM:

min
θ,φ

Eqθ(z0|x) [− log pφ(x|z0)] + Eqθ(z0|x) [log qθ(z0|x)] + Et,ϵ,q(zt|z0),qθ(z0|x)

[
w(t)

2 ∥ϵ− ϵψ(zt, t)∥2
2

]
,

where w(t) is a weighting function,ϵψ(·) represents a diffusion model, and ϵ ∼ N (0, I). Similar to our loss objective (refer
to Eqn. 8), LSGM substitutes the traditional cross-entropy term with a learnable neural network prior. Specifically, the final
term in the Evidence Lower Bound (ELBO) is replaced with a weighted denoising score matching objective.
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Figure 6. (a) MNIST to USPS Figure 6. (b) USPS to MNIST (LSDA)

Figure 6. (c) UMAP with SP Figure 6. (d) UMAP without SP

Figure 7. (a) MNIST to USPS (LSDA). (b) USPS to MNIST (LSDA). (c) UMAP with SP. (d) UMAP without SP. All labeled data is
randomly selected from the source dataset and tested on the target dataset, with results averaged over 10 trials. Both (a) and (b) demonstrate
that with SP loss, the model is more robust to limited data. This is further supported by the corresponding UMAP visualizations, where (c)
shows larger separation between classes compared to (d), reflecting better class distinction.

We first adapt notations used in our objective for easy readability during comparison. Diffusion model can approximate the
denoising score function by rewriting ϵψ(zt, t) = σtSψ(z + σtϵ, σt) (Song et al., 2022). To streamline discussion and avoid
repetition, we will refer to the final term of this formulation as the LSGM objective, we can write the cross-entropy term of
LSGM as below with the weighting function as w(t) = g(t)2/σt

2 which maximizes the likelihood between the encoder
posterior and the prior where g(·) is the diffusion coefficient typically proportional to the variance scheduling function (Song
et al., 2021b)(Vahdat et al., 2021).

LLSGM = Eqσt (z̃|z),qθ(z|x)

[
w(t)

2 ∥ϵ− ϵψ(zt, t)∥2
2

]
(22)

= Eqσt (z̃|z),qθ(z|x)

[
g(t)2

2

∥∥∥∥ ϵ

σt
− Sψ(z̃ = z + σtϵ, σt)

∥∥∥∥2

2

]
(23)

During encoder updates, the gradient computation for the last term with respect to the encoder parameters is expressed as:

∇θLLSGM =Eqσt (z̃|z),qθ(z|x)

[
g(t)2

(
ϵ

σt
− Sψ(z̃, σt)

)⊤
∂Sψ(z̃, σt)

∂z̃

∂z̃

∂θ

]
. (24)

This framework requires computing the Jacobian term ∂Sψ(z̃,σt)
∂zt

, which is both computationally expensive and memory-
intensive. To mitigate this, the Score Function Substitution (SFS) trick eliminates the need for Jacobian computation by
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detaching the latent input z∗ in the score function from the encoder parameters. The resulting gradient is expressed as:

∇θLSFS = Ez∼qθ(z|x,d)

[(
−Sψ(z∗, σ ≈ 0)

∣∣∣
z∗=z

)⊤ ∂z

∂θ

]
. (25)

This modification provides significant advantages, reducing memory usage by bypassing the computational graph of the
diffusion model’s U-NET and enhancing stability. Poole et al. (2022) highlighted that the Jacobian computation approximates
the Hessian of the dataset distribution, which is particularly unstable at low noise levels. Our empirical results in Fig. 1
confirm these findings, demonstrating improved stability with our loss objective compared to LSGM.
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G. Choices of different metric spaces in different dataset

Figure 8. Histogram of the pairwise distance between data samples within a class and between different classes for three datasets: MNIST,
USPS, and CelebA. The amount of separation of two histogram is computed by using the AUROC score which being measured by a
binary classifier to distinguish between with-in class results and between-class results. The class considered in MNIST and USPS is the
digits, and in CelebA is hair color.

From the graph, we observe that for the MNIST and USPS datasets, both the Euclidean pixel space metric and the semantic
space metric can effectively separate data pairs into within-class or between-class categories. However, the semantic space
metric demonstrates a higher AUROC separation score, indicating that it provides a more reliable metric for distinguishing
between these pair types.

In contrast, for the CelebA dataset, relying solely on pixel-based Euclidean distances struggles to differentiate whether the
paired distances belong to within-class or between-class data pairs. By employing a semantic metric, such as the one derived
from CLIP, a clear distinction emerges, underscoring its utility.

These observations highlight that while pixel space metrics like Euclidean distance may be useful for certain datasets,
semantic distance metrics, when available, often offer superior performance and may even be essential for datasets with
more complex structures or features.

H. Multi-Domain Distribution Matching Setting
We train SAUB with SP on three different MNIST rotation angles: 0◦, 30◦, 60◦. The top row is the ground truth image, the
second row is the reconstruction, the third row is translation to MNIST 30◦, and last row is translation to MNIST 60◦ in
Fig. 9. Qualitatively most of the stylistic and semantic features are preserved with the correct rotation.
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I. Detailed Architecture of the model
I.1. Fairness Representation Learning

The encoder is a 3-layer MLP with hidden dimension 64, and latent dimension 8 with ReLU layers connecting in between.
The classifier is a 3-layer MLP with hidden dimension 64 with ReLU layers connecting in between.

I.2. Separation Metric for Synthetic Dataset

The classifier is trained by a support vector where hyperparmeters are chosen from the list ‘C’: [0.1, 1, 10, 100], ‘gamma’:
[1, 0.1, 0.01, 0.001] with 5-fold cross validation. Error plot is generated from 5 runs.

I.3. Domain Adaptation VAE Model

ENCODER ARCHITECTURE

The encoder compresses the input image x ∈ R1×28×28 into a latent representation. The architecture consists of the
following layers:

• Conv2D: 4 × 4, stride 2, 16 channels (input size 28 × 28 → 14 × 14).

• Residual Block: 16 channels.

• Conv2D: 4 × 4, stride 2, 64 channels (input size 14 × 14 → 7 × 7).

• Residual Block: 64 channels.

• Conv2D: 3 × 3, stride 2, 2 × latent size channels (input size 7 × 7 → 4 × 4).

• Residual Block: 2 × latent size channels.

• Conv2D: 4 × 4, stride 1, 2 × latent size channels (output size 4 × 4 → 1 × 1).

• Split into two branches for µ and log σ2, each with latent size channels.

DECODER ARCHITECTURE

The decoder reconstructs the input image x′ ∈ R1×28×28 from the latent representation. The architecture consists of the
following layers:

• Reshape: Latent vector reshaped to size (latent size, 1, 1).

• Residual Block: latent size channels.

• ConvTranspose2D: 4 × 4, stride 1, 64 channels (output size 1 × 1 → 4 × 4).

• Residual Block: 64 channels.

• ConvTranspose2D: 4 × 4, stride 2, 16 channels (output size 4 × 4 → 8 × 8).

• Residual Block: 16 channels.

• ConvTranspose2D: 4 × 4, stride 4, 1 channel (output size 8 × 8 → 28 × 28).

I.4. Domain Translation VAE Model

ENCODER ARCHITECTURE

The encoder compresses the input image x ∈ R3×64×64 into a latent representation. The architecture consists of the
following layers:

• Conv2D: 3 × 3, stride 2, 64 channels (input size 64 × 64 → 32 × 32).
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• Residual Block: 64 channels.

• Conv2D: 3 × 3, stride 2, 128 channels (input size 32 × 32 → 16 × 16).

• Residual Block: 128 channels.

• Conv2D: 3 × 3, stride 2, 256 channels (input size 16 × 16 → 8 × 8).

• Residual Block: 256 channels.

• Conv2D: 3 × 3, stride 2, 2 × latent size channels (input size 8 × 8 → 4 × 4).

• Residual Block: 2 × latent size channels.

• Split into two branches for µ and log σ2, each with latent size channels.

DECODER ARCHITECTURE

The decoder reconstructs the input image x′ ∈ R3×64×64 from the latent representation. The architecture consists of the
following layers:

• Reshape: Latent vector reshaped to size (latent size, 4, 4).

• Residual Block: latent size channels.

• ConvTranspose2D: 3 × 3, stride 2, 256 channels (output size 4 × 4 → 8 × 8).

• Residual Block: 256 channels.

• ConvTranspose2D: 3 × 3, stride 2, 128 channels (output size 8 × 8 → 16 × 16).

• Residual Block: 128 channels.

• ConvTranspose2D: 3 × 3, stride 2, 64 channels (output size 16 × 16 → 32 × 32).

• Residual Block: 64 channels.

• ConvTranspose2D: 3 × 3, stride 2, 3 channels (output size 32 × 32 → 64 × 64).

• Sigmoid Activation: To map outputs to the range [0, 1].

I.5. Domain Adaptation Classifier

Classifier consists of 2 linear layers and a ReLU activation function.

I.6. Pretrained CLIP

For this work, we utilized pretrained CLIP models from the OpenCLIP repository. Specifically:

• ViT-H-14-378-quickgelu on dfn5b dataset was employed for training the GW-SP regularizer.

• ViT-L-14-quickgelu on dfn2b dataset was used for evaluation on the Image Retrieval task.

J. More Synthetic Dataset Results
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Figure 9. Multi-domain adaptation: MNIST images rotated at various angles.
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Figure 10. These figures show the translated dataset, reconstructed dataset, as well as the latent space under sample size 20.
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Figure 11. This figures show the translated dataset, reconstructed dataset, as well as the latent space under sample size 50.
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Figure 12. This figures show the translated dataset, reconstructed dataset, as well as the latent space under sample size 100.
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Figure 13. This figures show the translated dataset, reconstructed dataset, as well as the latent space under sample size 200.
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Figure 14. This figures show the translated dataset, reconstructed dataset, as well as the latent space under sample size 500.
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K. Image translation between MNIST and USPS

Figure 15. MNIST to USPS translated image trained with SP.

L. FairFace Image Translation
This experimental setting is conducted in a fully unsupervised manner without SP loss. We compare our proposed score-based
prior (SAUB) with a multi-Gaussian-based learning prior (VAUB) to evaluate their effectiveness.

L.1. Handpicked samples

Figure 15. (a) Male to Female translation Figure 15. Female to Male translation

Figure 16. In this experiment, both models are trained in an unsupervised manner (i.e., SAUB is trained without GW-SP loss). SAUB
clearly exhibits superior semantic preservation in both (a) and (b), particularly with respect to features such as skin color, race, and age.
Notably, SAUB makes minimal adjustments when altering gender, while VAUB struggles to retain the identity of the original data. (These
samples are handpicked to illustrate the trend.)
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L.2. Random Samples

In Fig. 17, we show completely random samples from the FairFace dataset.

Figure 17. Random samples from the FairFace experiment using our method. Top three rows translate from male to female and the bottom
three rows translate from female to male. First row is original, second is reconstructed, and third is translated.
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M. Additional Random Image Translations on CelebA
Examples of random image translations between black hair and blonde hair are presented in Fig. 18 and Fig. 19

Figure 18. Random Samples from Black to Blonde Hair Female
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N. Ablation Studies and Computational Efficiency Analysis
Component-wise Ablation Studies To isolate the contributions of our Gromov-Wasserstein (GW) structural preservation
regularization component, we conducted comprehensive ablation studies comparing our SAUB method with established
baselines. Following the same experimental setup as described in subsection 5.2, we evaluated VAUB with GW regularization
and LSGM (Vahdat et al., 2021) both with and without GW-EP regularization on the fairness dataset, which provides clear
metrics for both distribution matching (DP gap) and downstream task performance (Accuracy).

The experimental results demonstrate two key findings: (1) GW regularization consistently improves performance across all
methods in terms of downstream task performance, validating the effectiveness of our structural preservation approach; and
(2) our SAUB method achieves comparable performance to LSGM with and without GW regularization, while offering
computational advantages as detailed below.

Computational Efficiency Analysis We conducted a systematic comparison of computational efficiency between our
approach and LSGM across varying latent dimensions. Due to the varying dimensionalities across different tasks in our
experimental framework—from toy datasets (114 dimensions) to CelebA datasets (64 × 64 × 3 dimensions)—we performed
controlled experiments with different latent dimensions (from 8 to 256) to simulate the parameter structures encountered
across our diverse experimental tasks. Table 3 presents the computational efficiency metrics comparing LSGM and our
approach across different latent dimensions.

Table 3. Computational efficiency: LSGM vs. Ours

Dim VRAM (MB) ↓ Time/epoch (ms) ↓ Speedup ↑
LSGM Ours LSGM Ours VRAM Time

8 28.6 27.9 138.0 121.8 1.03× 1.13×
16 30.8 28.3 142.5 138.8 1.09× 1.03×
64 43.1 33.5 140.9 137.6 1.29× 1.02×

128 60.2 41.8 146.5 141.4 1.44× 1.04×
256 99.3 60.3 146.9 140.1 1.65× 1.05×

Our approach demonstrates consistently lower VRAM requirements compared to LSGM, with efficiency gains becoming
more pronounced as latent dimensions increase. Training speed improvements range from 1.02× to 1.13× across different
dimensions. These efficiency gains stem primarily from avoiding the costly Jacobian computations required in LSGM, as
detailed in our theoretical analysis in subsection 3.3. The improved efficiency is particularly significant as the proportion of
network parameters allocated for score-based prior distributions increases with dataset dimensionality, making our approach
increasingly advantageous for high-dimensional applications.

These results demonstrate that combining score-based priors with GW regularization not only maintains competitive
performance but also provides computational benefits, making our approach more practical for real-world applications
across diverse domains.
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Figure 19. Random Samples from Blonde to Black Hair Female
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Figure 20. Fairness-accuracy trade-off comparison across different methods with and without Gromov-Wasserstein regularization. The
plot shows accuracy (x-axis) versus demographic parity gap ∆DP (y-axis) for VAUB, LSGM, and SAUB methods. Lower ∆DP values
indicate better fairness performance, while higher accuracy values indicate better downstream task performance.
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