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Motivation Generalized Admixtures Poisson MRFs in Context of LDA Qualitative Experiment
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and thus these previous models can only represent topics as a list of words

ordered by frequency. However, our model, an admixture of Poisson MRFs,
can model dependencies between words and hence can represent topics as a
graph over words.

Figure: The densities of three 2D Poisson MRFs that show possible
dependency structures between two words. Negative dependencies (left)
suggest that two words rarely co-occur whereas positive dependencies (right)
suggest that two words often co-occur.

For this preliminary experiment, APM seems to outperform
LDA when the number of topics is small but is only comparable
to LDA for a larger number of topics (Median scores shown).
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