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Possible applications:
-  Topic Visualization
-  Corpus Summarization
-  Word Sense Disambiguation
-  Semantic Similarity
-  Document Classification
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I Previous topic models assume independence between words.
I An Admixture of Poisson MRFs (APM), however, explicitly

models word dependencies.
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Main Contributions

1. Generalized Admixtures

2. (Background) Poisson MRF [Yang et al. 2012])
I Poisson MRFs in the context of LDA
I Novel conjugate prior for a Poisson MRF

3. Admixture of Poisson MRFs (APM)

4. Tractable MAP parameter estimation
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Formalizing Generalized Admixtures
I Mixtures - Draws from single

component distribution. (Top)

I Admixtures - Draws from a
distribution whose parameters are a
convex combination of component
parameters. (Bottom)
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Examples of Admixture Models

1. LDA [Blei et al. 2003]
I LDA is an admixture of Multinomials

(i.e. Mult(p1), Mult(p2), · · · , Mult(pk))
I Dirichlet prior over p1...k

2. Population Admixtures
I Equivalent model to LDA in genetics [Pritchard et al. 2000]
I Admixture term comes from genetics literature
I Original ancestors of population correspond to “topics”
I Individuals of a population correspond to “documents”

3. Spherical Admixture Model [Reisinger et al. 2010]
I Von Mises-Fisher base distribution

(an independent Gaussian analog on unit hypersphere)
I Von Mises-Fisher priors
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Background: Poisson MRFs [Yang et al., 2012]

P(A | B, C) P(B | A, C) P(C | A, B)

P(A, B, C) ??

If we assume the node conditional distributions are Poisson,

does there exist a joint MRF distribution 
that has these conditionals?

I Poisson MRF joint distribution:

Pr
PMRF

(x |θ,Θ) ∝ exp

{
θTx + xT Θx−

p∑
s=1

ln(xs !)

}
.

I Node conditionals are 1-D Poissons:

Pr(xs | x−s , θs ,Θs) ∝ exp{ (θs + xT Θs︸ ︷︷ ︸
ηs

) xs − ln(xs !) }.
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1. Each conditional (”slice”)
of a PMRF is 1-D Poisson.

2. Distinct from Gaussian
MRF

3. Positive dependencies can
model word co-occurence.a

a
See [Yang et al. 2013] for SPMRF model that

allows for positive dependencies.
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Poisson MRFs in the Context of LDA
I LDA uses Multinomial distributions but if the parameter

N ∼ Poisson(x̃ =
∑p

s=1 xs |λ̃ =
∑p

s=1 λ), then the joint
distribution is an independent Poisson model:1
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I Therefore, the topic-word distribution of LDA can be viewed
as a special case of a Poisson MRF.

1Gopalan et al. (2013) recently introduced the connection between LDA and
independent Poissons in the context of matrix factorization.
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Novel conjugate prior for a Poisson MRF

I Form of a conjugate prior:

Pr(θ,Θ) ∝ exp{βTθ + βT Θβ − γA (θ,Θ)

− λθ‖θ‖2
2 − λ‖vec(Θ)‖1},

where A (θ,Θ) is the log partition function of a PMRF.2

I λ‖vec(Θ)‖1 term encourages sparsity in Θ
(i.e. a Laplace prior on Θ).

I β can be viewed as adding pseudo-counts
(similar to a Dirichlet prior for a Multinomial)

2λθ‖θ‖2
2 and λ‖vec(Θ)‖1 needed for normalization of this prior distribution.

In practice, λθ can be set arbitrarily small and is thus ignored in subsequent
discussion.
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Admixture of Poisson MRFs (APM)

I Poisson MRF base distribution
I Priors

I Dirichlet prior on admixture weights
I Conjugate prior on component PMRFs

Pr
APM

(x,w,θ1...k ,Θ1...k)

= Pr
PMRF
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I Topics → graphs over words (from PMRF parameters)

I Documents → weights over topics (dimensionality reduction)
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Parameter Estimation using Approximate Posterior

I Because the Poisson MRF likelihood does not have a
closed-form solution, we approximate the likelihood with the
pseudo log-likelihood:

L ≈ L̂(X |W,θ1...k ,Θ1...k)

=
n∑

i=1

 p∑
s=1

ηisxis − ln(xis !)− A (ηis)︸ ︷︷ ︸
Conditional Poisson log-likelihood

 ,
where ηis =

∑k
j=1 wij(θ

j
s + xT

i Θj
s) is the canonical parameter

of a univariate Poisson (i.e. λis = exp(ηis)).
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Tractable MAP Parameter Estimation

I The approximate log posterior is:

P(W,θ1...k ,Θ1...k |X ) ≈ L̂ × ln(priors)

∝
n∑

i=1


 p∑

s=1

ηis (xis +βs)︸ ︷︷ ︸
psuedo-counts

−(γ+1)A (ηis)

+(α−1)T ln(wi )︸ ︷︷ ︸
Dirichlet prior

−
k∑

j=1

λ‖Θj‖1︸ ︷︷ ︸
`1 penalty
for sparsity

I A MAP parameter estimate can be computed by the following:

arg min
W,θ1...k ,Θ1...k

− f (W,θ1...k ,Θ1...k)

︸ ︷︷ ︸
differentiable

+ δW (W) + λ

k∑
j=1

‖Θj‖1︸ ︷︷ ︸
nonsmooth but convex

I A proximal gradient method can used
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Qualitative Experiment
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I APM topic visualizations are intuitive
(versus list of word representations in LDA/PLSA)

I Explicit structure such as word chains
(e.g. [plays − theater −musical −music])

I Interesting central words
(e.g. [theater ], [music], [temperature])
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Preliminary Coherence Experiments
Dataset # of Words # of Documents

CMU 20 Newsgroup 200 18,846

I UMass Coherence Metric
[Minmo et al. 2011]
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I Pointwise Mutual Info.
[Newman et al. 2010]
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Summary

I Introduced Admixture of Poisson MRFs that explictily models
word dependencies

I Formalized a class of models called admixtures that
generalizes previous topic models

I Provided tractable MAP parameter estimation

I Showed preliminary results on datasets
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Future Work

I Scalability
I Obvious concern since number of parameters is O(p2)
I Faster, parallel parameter estimation algorithm

(promising initial work on this)

I Empirical Experiments
I Evaluate semantic meaningfulness of edges in PMRF graph

(promising initial work on this)
I Word Sense Disambiguation (WSD)
I Document classification

I Visualization
I Visualize topics
I Visualize documents
I Visual information retrieval
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Thanks for listening!
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Thanks for listening!

Possible applications:
-  Topic Visualization
-  Corpus Summarization
-  Word Sense Disambiguation
-  Semantic Similarity
-  Document Classification
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