Capturing Semantically Meaningful Word Dependencies

 with an Admixture of Poisson MRFsCollege of Natural Sciences
Admixture of Poisson MRFs (APM) [Inouye et al. 2014]

Figure: Previous topic models assume words are conditionally independent of each other given a topic, and thus, these previous models can only represent topics as a list of words ordered by frequency. However, an Admixture of Poisson MRFs (APM) can model dependencies between words and hence can represent each topic as a graph over words.
Open Problems in APM Model

1. High computational complexity of APM - No parallelism since optimizing jointly over all parameters APM has $O\left(k p^{2}\right)$ parameters versus $O(k p)$ for LD
. Edge parameters of APM not directly evaluated Previous metrics calculated word pair statistics for top words [Newman et al. 2010, Mimno et al. 2011, Aletras and Court 2013] However, APM explicitly models dependencies between word
How can we semantically evaluate these dependencies? How can we semantically evaluate these dependencies?
Proposed Solutions
2. Parallel alternating Newton-like algorithm - Split into two convex problems

Demonstrate scaling at $p=10,000$ and $n=100,000$ Empirically, $O\left(k n p^{2}\right)$ complexity to estimate $O\left(k n+k p^{2}\right)$ parameters http://bigdata.ices.utexas.edu/software/apm/
2. Evocation metric that directly evaluates word pairs Develop novel metric based on notion of evocation
(which words "bring to mind" other words)
[Inouye et al. 2014] Inouye, D. I.. Ravikumar, P., and Dhillon, I. S. Admixture of
Poisson MRFs: A Topic Model with Word Deendencies II ICM

Parallel Alternating Newton-like
Algorithm (Code available*)

Figure: (Left) In mixtures, documents are drawn from exactly one component distribution. (Right) In admixtures, documents are drawn from
distribution whose parameters are a convex combination of component distribution
The conditional distribution given the admixture weights and component distributions is merely the base distribution with parameters that are instance-specific mixtures of the component parameters:

$$
\operatorname{Pr}_{\text {Admix. }}(\mathbf{x} \mid \mathbf{w}, \Phi)=\operatorname{Pr}_{\text {Base }}\left(\mathbf{x} \mid \bar{\phi}=\psi^{-1}\left[\sum_{j=1}^{k} w_{j} \psi\left(\phi^{j}\right)\right]\right)
$$

Admixtures/topic models/mixed-membership models:

- LDA [Blei et al. 2003] - An admixture of Multinomials - Spherical Admixture Model (SAM) [Reisinger et al., 2010] An admixture of Von-Mises Fisher distributions
- Mixed Membership Stochastic Block Models [Airoldi et al. 2009] - An admixture for generative networks
Background: Poisson MRF
By assuming that the conditional distribution of a variable x_{s} given all other variables $\mathbf{x}_{\backslash s}$ is a univariate Poisson, a joint Poisson distribution can defined [Yang et al. 2012]:

$$
\operatorname{Pr}_{\mathrm{PMRF}}(\mathbf{x} \mid \boldsymbol{\theta}, \Theta) \propto \exp \left\{\boldsymbol{\theta}^{\top} \mathbf{x}+\mathbf{x}^{\top} \Theta \mathbf{x}-\sum_{s=1}^{p} \ln \left(x_{s}!\right)\right\}
$$

where $\boldsymbol{\theta} \in \mathbb{R}^{p}$ and $\Theta \in\left\{\mathbb{R}^{p \times p}: \operatorname{diag}(\Theta)=0\right\}$
Node conditionals (i.e. the distribution of one word given all other words) are 1-D Poissons:

$$
\operatorname{Pr}\left(x_{s} \mid \mathbf{x}_{-s}, \theta_{s}, \Theta_{s}\right) \propto \exp \{(\underbrace{\theta_{s}+\mathbf{x}^{\top} \Theta_{s}}_{\eta_{s}}) x_{s}-\ln \left(x_{s}!\right)\} .
$$

Background: APM Formal Definition
An Admixture of Poisson MRFs (APM) is an admixture with Poisson MRFs as the component distributions:

$$
\operatorname{Pr}_{\text {APM }}\left(\mathbf{x}, \mathbf{w}, \boldsymbol{\theta}^{1 \ldots k}, \Theta^{1 \ldots k}\right)=
$$

$$
\operatorname{Pr}_{\mathrm{PMRF}}\left(\mathbf{x} \mid \overline{\boldsymbol{\theta}}=\sum_{j=1}^{k} w_{j} \boldsymbol{\theta}^{j}, \bar{\Theta}=\sum_{j=1}^{k} w_{j} \Theta^{j}\right) \underset{\operatorname{Dr}}{\operatorname{Pr}(\mathbf{w})} \prod_{j=1}^{k} \operatorname{Pr}\left(\boldsymbol{\theta}^{j}, \Theta^{j}\right)
$$

[Yang et al. 2012] Yang, E., Ravikumar, P., Allen, G. I., and Liu., Z. Graphical Models via
Generalized Linear Models. In NIPS, 2012. [Hsieh et al. 2014] Hsieh, C.-.J. Sustik. M.
(Hsien et al. 2014) Hsien, C.J.,. Sustik, M. A., Dhillon, I. S., and Ravikumar, P. QUC:
[Boyd-Graber et al. 2006] Boyd-Graber, J., Fellbaum, C., Osherson, D., and Schapire, R.
Adding Dense, Weighted Connections to \{WordNet\} In Glopal \{WordNet Conference,

1. Split the algorithm into alternating steps

- Posterior is convex in W or $\left(\boldsymbol{\theta}^{1 \ldots k}, \Theta^{1 . . . k}\right)$ but not both

Similar to EM for mixture models or ALS for NMF
$\underset{\Phi^{1}, \boldsymbol{\Phi}^{2}, \ldots, \Phi^{p}}{\arg \min }-\frac{1}{n} \sum_{s=1}^{p}\left[\operatorname{tr}\left(\mathbf{Z}^{s} \boldsymbol{\Phi}^{s}\right)-\sum_{i=1}^{n} \exp \left(\mathbf{z}_{i}^{\top} \boldsymbol{\Phi}^{s} \mathbf{w}_{i}\right)\right]+\sum_{s=1}^{p} \lambda\left\|\operatorname{vec}\left(\boldsymbol{\Phi}^{s}\right)_{\backslash 1}\right\|_{1}$
$\underset{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{n} \in \Delta^{k}}{\arg \min }-\frac{1}{n} \sum_{i=1}^{n}\left[\boldsymbol{\psi}_{i}^{\top} \mathbf{w}_{i} \quad-\sum_{s=1}^{p} \exp \left(\mathbf{z}_{i}^{\top} \boldsymbol{\Phi}^{s} \mathbf{w}_{i}\right)\right]$
$\begin{array}{lll}\text { where } & \mathbf{z}_{i}=\left[1 \mathbf{x}_{1}^{T}\right]^{T} & \tilde{\mathbf{z}}^{s}=f(X, \mathrm{~W}) \\ & \phi_{s}^{j}=\left[\theta_{s}^{j}\left(\Theta_{s}^{j}\right)^{T}\right]^{T} & \boldsymbol{\psi}_{i}=f\left(X, \boldsymbol{\Phi}^{1 .}\right.\end{array}$ $\phi_{s}^{j}=\left[\theta_{s}^{j}\left(\Theta_{s}^{j}\right)^{T}\right]^{T}$
$\Phi^{s}=\left[\phi_{s}^{1} \phi_{s}^{2} \cdots \phi_{s}^{k}\right]$
$\boldsymbol{\psi}_{i}=f\left(X, \Phi^{1 \ldots k}\right)$
2. Use proximal Newton-like method [Hsieh et al. 2014] 3. Simplify Newton step computation [Hsieh et al. 2014] - Compute Hessian entries only for non-zero/free parameters

Timing Results on Wikipedia

Figure: Timing results for different sizes of a Wikipedia dataset show that the algorithm scales approximately as $O\left(n p^{2}\right)$. (Fixing $k=5, \lambda=0.5$) Parallel Speedup on BNC Corpus

Figure: Parallel speedup is approximately linear when using a simple parfor loop in MATLAB. Subproblems are all independent so speedup could be $O(\min (n, p)$) on distributed system. Experiment on BNC corpus ($p=1646$ and $n=4049$) fixing $k=5, \lambda=8$ and running for 30 alternating iterations.
Evocation [Boyd-Graber et al. 2006] - Evocation denotes the idea of which words "evoke" or "bring to mind" other words
Distinctive from word similarity or synonymy
Types of evocation: Rose - Flower (example), Brave - Noble (kind), Yell - Talk (manner), Eggs - Bacon (co-occurence), Snore - Sleep (setting), Wet - Desert (antonymy), Work Lazy (exclusivity), Banana - Kiwi (likeness).

Evocation Metric

$m=$ Number of top word pairs to evaluate
$\mathcal{H}=$ Human-evaluated scores for subset of word pairs
$\begin{aligned} \mathcal{M} & =\text { Corresponding weights induced by model }\end{aligned}$
$\pi_{\mathcal{M}}(j)=\operatorname{Ordering}$ induced by \mathcal{M}
$\operatorname{Evoc}_{m}(\mathcal{M}, \mathcal{H})=\sum_{i=1}^{m} \mathcal{H}_{\pi_{\mathbb{N}}(\mathcal{U})} \quad$ (Evocation for Single Topic)
Evoc-1 $=\sum_{j=1}^{k} \frac{1}{k} \operatorname{Evoc}_{m}\left(\mathcal{M}^{j}, \mathcal{H}\right)$
(Avg. Evoc. of Topics)
$\operatorname{Evoc}^{2}=\operatorname{Evoc}_{m}\left(\sum_{j=1}^{k} \frac{1}{k} \mathcal{M} \mathcal{M}^{j}, \mathcal{H}\right)$
(Evoc. of Avg. Topic)
Evocation Metric Results

Qualitative Analysis of Evocation - Word pairs for Evoc-2 ($m=50$) ordered by human score

Best LDA Model ($k=50$)		Best APM Model ($k=5$)	
${ }_{\text {Hemman }}$	Word Pair	${ }_{\text {Hexman }}^{\text {Huma }}$	Pair
100	un.v	100	hone.n
82	teach.v \leftrightarrow scho	97	husband.n
${ }_{6}^{69}$	ool.n n class.n	82	residential.a \leftrightarrow home.
${ }_{6}^{63}$	an.n \leftrightarrow car. n	76 75	politics.n n ¢ politica
51	ur.n \leftrightarrow day.n		steel.n \leftrightarrow iron.n
50	teach.v \leftrightarrow student.n		job.n \leftrightarrow employme
44	house.n \leftrightarrow government.		om.n \leftrightarrow bedroom.n
	eek.n \leftrightarrow day.n		unt.n \leftrightarrow uncl
38	university.n \leftrightarrow institution.n	72	printer.n \leftrightarrow print.v
$\begin{array}{r}38 \\ 38 \\ \hline\end{array}$	state.n \longleftrightarrow government.n	60 57	
38	give.v \leftrightarrow church.n	57	qrison.n \leftrightarrow cell.n
38	wife.n \leftrightarrow man.n		mother.n \leftrightarrow baby.n
38	gine.n \leftrightarrow car.n	50	sun.n \leftrightarrow earth.n
35	publish. $v \leftrightarrow$ book.n	50	west.n \leftrightarrow east.n
32	west.n \leftrightarrow state.n	44	weekend.n \leftrightarrow sunday
32	year.n \leftrightarrow day n .	41	wine.n \leftrightarrow drink. ${ }^{\text {c }}$
25	member.n \uparrow give.v	38	south.n \leftrightarrow north.n
$\begin{array}{r}25 \\ 25 \\ \hline\end{array}$	$\underset{\text { dog.n } \mathrm{n}}{\text { seat } \mathrm{animal.} \text {. }}$	38 38	$\underset{\text { morning.n } n \text { afternoo }}{ }$

Red highlights pairs that seem semantically uninteresting
Blue highlights pairs that seem semantically interesting

