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Doc. 1  -  Nuclear power, or 
nuclear energy, is the use of 
exothermic nuclear processes...

Doc. 2  -  Theatre or theater is a 
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uses live performers ...
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“Fine Arts”

“Temperature”

Previous Independent Models

Corpus Examples:
-  Encyclopedia 
Articles
-  Twitter Posts
-  News Articles
-  Research papers

Applications:
- Topic Visualization
- Information 
Retrieval
- Document 
Classification
- Word Sense 
Disambiguation

Figure: Previous topic models assume words are conditionally independent of
each other given a topic, and thus, these previous models can only represent
topics as a list of words ordered by frequency. However, an Admixture of
Poisson MRFs (APM) can model dependencies between words and hence
can represent each topic as a graph over words.

Open Problems in APM Model
1. High computational complexity of APM

I No parallelism since optimizing jointly over all parameters
I Slow convergence of proximal gradient descent
I APM has O(kp2) parameters versus O(kp) for LDA

2. Edge parameters of APM not directly evaluated
I Previous metrics calculated word pair statistics for top words

[Newman et al. 2010, Mimno et al. 2011, Aletras and Court 2013]

I However, APM explicitly models dependencies between words
I How can we semantically evaluate these dependencies?

Proposed Solutions
1. Parallel alternating Newton-like algorithm

I Split into two convex problems
I Demonstrate scaling at p = 10, 000 and n = 100, 000
I Empirically, O(knp2) complexity to estimate O(kn + kp2) parameters
I http://bigdata.ices.utexas.edu/software/apm/

2. Evocation metric that directly evaluates word pairs
I Develop novel metric based on notion of evocation

(which words “bring to mind” other words)

[Inouye et al. 2014] Inouye, D. I., Ravikumar, P., and Dhillon, I. S. Admixture of

Poisson MRFs: A Topic Model with Word Dependencies. In ICML, 2014.
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Figure: (Left) In mixtures, documents are drawn from exactly one
component distribution. (Right) In admixtures, documents are drawn from a
distribution whose parameters are a convex combination of component
parameters.

The conditional distribution given the admixture weights and
component distributions is merely the base distribution with
parameters that are instance-specific mixtures of the component
parameters:

Pr
Admix.

(x |w,Φ) = Pr
Base

(
x
∣∣∣ φ̄ = Ψ−1

[ k∑
j=1

wjΨ(φj)
])

Admixtures/topic models/mixed-membership models:
I LDA [Blei et al. 2003] - An admixture of Multinomials

I Spherical Admixture Model (SAM) [Reisinger et al., 2010] -
An admixture of Von-Mises Fisher distributions

I Mixed Membership Stochastic Block Models [Airoldi et al.
2009] - An admixture for generative networks

Background: Poisson MRF
By assuming that the conditional distribution of a variable xs

given all other variables x\s is a univariate Poisson, a joint
Poisson distribution can defined [Yang et al. 2012]:

Pr
PMRF

(x |θ,Θ) ∝ exp

{
θTx + xTΘx−

p∑
s=1

ln(xs!)

}
,

where θ ∈ Rp and Θ ∈ {Rp×p : diag (Θ) = 0}.
Node conditionals (i.e. the distribution of one word given all
other words) are 1-D Poissons:

Pr(xs | x−s, θs,Θs) ∝ exp{ (θs + xTΘs︸ ︷︷ ︸
ηs

) xs − ln(xs!) }.

Background: APM Formal Definition
An Admixture of Poisson MRFs (APM) is an admixture with
Poisson MRFs as the component distributions:

Pr
APM

(x,w,θ1...k,Θ1...k) =

Pr
PMRF

x

∣∣∣∣∣∣ θ̄ =
k∑

j=1

wjθ
j, Θ̄ =

k∑
j=1

wjΘ
j

Pr
Dir

(w)
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j=1

Pr(θj,Θj)

[Yang et al. 2012] Yang, E., Ravikumar, P., Allen, G. I., and Liu., Z. Graphical Models via

Generalized Linear Models. In NIPS, 2012.

[Hsieh et al. 2014] Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. QUIC:

Quadratic Approximation for Sparse Inverse Covariance Estimation. JMLR, 2014.

[Boyd-Graber et al. 2006] Boyd-Graber, J., Fellbaum, C., Osherson, D., and Schapire, R.

Adding Dense, Weighted Connections to {WordNet}. In Global {WordNet} Conference, 2006.

Parallel Alternating Newton-like
Algorithm (Code available*)

1. Split the algorithm into alternating steps
I Posterior is convex in W or (θ1...k,Θ1...k) but not both
I Similar to EM for mixture models or ALS for NMF

arg min
Φ1,Φ2,··· ,Φp

−1

n

p∑
s=1

[
tr(Z̃

s
Φs)−

n∑
i=1

exp(zT
i Φswi)

]
+

p∑
s=1

λ‖vec(Φs)\1‖1

arg min
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−1

n

n∑
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[
ψT

i wi −
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]
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i ]T Z̃
s

= f (X ,W)

φj
s = [θj

s (Θj
s)

T ]T ψi = f (X ,Φ1...k)

Φs = [φ1
s φ

2
s · · ·φk

s ]

2. Use proximal Newton-like method [Hsieh et al. 2014]
3. Simplify Newton step computation [Hsieh et al. 2014]

I Compute Hessian entries only for non-zero/free parameters

* Code available at: http://bigdata.ices.utexas.edu/software/apm/

Timing Results on Wikipedia
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Figure: Timing results for different sizes of a Wikipedia dataset show that
the algorithm scales approximately as O(np2). (Fixing k = 5, λ = 0.5)

Parallel Speedup on BNC Corpus
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Figure: Parallel speedup is approximately linear when using a simple parfor

loop in MATLAB. Subproblems are all independent so speedup could be
O(min(n, p)) on distributed system. Experiment on BNC corpus (p = 1646
and n = 4049) fixing k = 5, λ = 8 and running for 30 alternating iterations.

Evocation [Boyd-Graber et al. 2006]
I Evocation denotes the idea of which words “evoke” or “bring

to mind” other words

I Distinctive from word similarity or synonymy

I Types of evocation: Rose - Flower (example), Brave - Noble
(kind), Yell - Talk (manner), Eggs - Bacon (co-occurence),
Snore - Sleep (setting), Wet - Desert (antonymy), Work -
Lazy (exclusivity), Banana - Kiwi (likeness).

Evocation Metric
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Word Pair H M

Rank by model weights M Sum top-m human scores H

m = Number of top word pairs to evaluate

H = Human-evaluated scores for subset of word pairs

M = Corresponding weights induced by model

πM(j) = Ordering induced by M
so that Mπ(1) ≥Mπ(2) ≥ · · · ≥ Mπ(|H|)

Evocm(M,H) =
m∑

j=1

HπM(j) (Evocation for Single Topic)

Evoc-1 =
k∑

j=1

1

k
Evocm(Mj ,H) (Avg. Evoc. of Topics)

Evoc-2 = Evocm(
k∑

j=1

1

k
Mj ,H) (Evoc. of Avg. Topic)

Evocation Metric Results
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Qualitative Analysis of Evocation
I Word pairs for Evoc-2 (m = 50) ordered by human score

Best LDA Model (k = 50) Best APM Model (k = 5)

Human 

Score

Human 

Score

100 run.v ↔ car.n 100 telephone.n ↔ call.n
82 teach.v↔ school.n 97 husband.n↔wife.n
69 school.n ↔ class.n 82 residential.a ↔ home.n
63 van.n ↔ car.n 76 politics.n ↔ political.a
51 hour.n ↔ day.n 75 steel.n ↔ iron.n
50 teach.v ↔ student.n 75 job.n ↔ employment.n

44 house.n ↔ government.n 75 room.n ↔ bedroom.n
44 week.n ↔ day.n 72 aunt.n↔ uncle.n
38 university.n ↔ institution.n 72 printer.n ↔ print.v
38 state.n ↔ government.n 60 love.v ↔ love.n
38 woman.n ↔man.n 57 question.n ↔ answer.n
38 give.v ↔ church.n 57 prison.n ↔ cell.n
38 wife.n ↔ man.n 51 mother.n ↔ baby.n
38 engine.n ↔ car.n 50 sun.n ↔ earth.n
35 publish.v ↔ book.n 50 west.n ↔ east.n
32 west.n ↔ state.n 44 weekend.n ↔ sunday.n
32 year.n ↔ day.n 41 wine.n ↔ drink.v
25 member.n ↔ give.v 38 south.n ↔ north.n
25 dog.n ↔ animal.n 38 morning.n ↔ afternoon.n
25 seat.n ↔ car.n 38 engine.n ↔ car.n

Word Pair Word Pair

I Red highlights pairs that seem semantically uninteresting

I Blue highlights pairs that seem semantically interesting

http://www.cs.utexas.edu/~dinouye/ {dinouye,pradeepr,inderjit}@cs.utexas.edu

http://bigdata.ices.utexas.edu/software/apm/
http://bigdata.ices.utexas.edu/software/apm/

