

Figure: Previous topic models assume words are conditionally *independent* of each other given a topic, and thus, these previous models can only represent topics as a *list of words* ordered by frequency. However, an Admixture of Poisson MRFs (APM) can model dependencies between words and hence can represent each topic as a graph over words.

## Open Problems in APM Model

Department of Computer Science

College of Natural Sciences

#### . High computational complexity of APM

- No parallelism since optimizing jointly over all parameters
- Slow convergence of proximal gradient descent
- APM has  $O(kp^2)$  parameters versus O(kp) for LDA

#### . Edge parameters of APM not directly evaluated

- Previous metrics calculated word pair statistics for top words [Newman et al. 2010, Mimno et al. 2011, Aletras and Court 2013]
- However, APM explicitly models dependencies between words
- How can we semantically evaluate these dependencies?

### **Proposed Solutions**

#### . Parallel alternating Newton-like algorithm

- Split into two convex problems
- Demonstrate scaling at p = 10,000 and n = 100,000
- Empirically,  $O(knp^2)$  complexity to estimate  $O(kn + kp^2)$  parameters
- http://bigdata.ices.utexas.edu/software/apm/
- 2. Evocation metric that directly evaluates word pairs Develop novel metric based on notion of evocation (which words "bring to mind" other words)

[Inouye et al. 2014] Inouye, D. I., Ravikumar, P., and Dhillon, I. S. Admixture of Poisson MRFs: A Topic Model with Word Dependencies. In ICML, 2014.

# Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs David I. Inouye, Pradeep Ravikumar, Inderjit S. Dhillon

$$\Pr_{\text{Admix.}}(\mathbf{x} \,|\, \mathbf{w}, \Phi) = \Pr_{\text{Base}}\left(\mathbf{x} \,\Big|\, \bar{\boldsymbol{\phi}} = \Psi^{-1} \Big[\sum_{j=1}^{k} w_{j} \Psi(\boldsymbol{\phi}^{j})\Big]\right)$$

#### Background: Poisson MRF

By assuming that the conditional distribution of a variable  $x_s$ given all other variables  $\mathbf{x}_{\setminus s}$  is a univariate Poisson, a joint Poisson distribution can defined [Yang et al. 2012]:

$$\Pr_{\mathsf{PMRF}}(\mathbf{x} \mid \boldsymbol{\theta}, \Theta) \propto \exp\left\{\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \Theta \mathbf{x} - \sum_{s=1}^{p} \ln(x_{s}!)\right\},\$$

where  $\boldsymbol{\theta} \in \mathbb{R}^p$  and  $\Theta \in \{\mathbb{R}^{p \times p} : \text{diag}(\Theta) = 0\}$ . Node conditionals (i.e. the distribution of one word given all other words) are 1-D Poissons:

$$\Pr(x_s \mid \mathbf{x}_{-s}, \theta_s, \Theta_s) \propto \exp\{\left(\underbrace{\theta_s + \mathbf{x}^T \Theta_s}_{\eta_s}\right) x_s - \ln(x_s!)\}.$$

### Background: APM Formal Definition

An Admixture of Poisson MRFs (APM) is an *admixture* with Poisson MRFs as the component distributions:  $\Pr(\mathbf{x} \mid \mathbf{w} \mid \boldsymbol{\theta}^{1...k} \mid \boldsymbol{\Theta}^{1...k}) =$ 

$$\Pr_{\mathsf{PMRF}} \left( \mathbf{x} \middle| \bar{\boldsymbol{\theta}} = \sum_{j=1}^{k} w_j \boldsymbol{\theta}^j, \bar{\boldsymbol{\Theta}} = \sum_{j=1}^{k} w_j \Theta^j \right) \Pr_{\mathsf{Dir}}(\mathbf{w}) \prod_{j=1}^{k} \Pr(\boldsymbol{\theta}^j, \Theta^j)$$

[Yang et al. 2012] Yang, E., Ravikumar, P., Allen, G. I., and Liu., Z. Graphical Models via Generalized Linear Models. In NIPS, 2012.

[Hsieh et al. 2014] Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation. JMLR, 2014. [Boyd-Graber et al. 2006] Boyd-Graber, J., Fellbaum, C., Osherson, D., and Schapire, R. Adding Dense, Weighted Connections to {WordNet}. In Global {WordNet} Conference, 2006.

## Parallel Alternating Newton-like Algorithm (Code available\*)

- **W**1,**W**

Figure: Timing results for different sizes of a Wikipedia dataset show that the algorithm scales approximately as  $O(np^2)$ . (Fixing  $k = 5, \lambda = 0.5$ )



Figure: Parallel speedup is approximately linear when using a simple parfor loop in MATLAB. Subproblems are all independent so speedup could be  $O(\min(n, p))$  on distributed system. Experiment on BNC corpus (p = 1646and n = 4049) fixing k = 5,  $\lambda = 8$  and running for 30 alternating iterations.

# Evocation [Boyd-Graber et al. 2006]

Evocation denotes the idea of which words "evoke" or "bring to mind" other words Distinctive from word similarity or synonymy ► Types of *evocation*: Rose - Flower (example), Brave - Noble (kind), Yell - Talk (manner), Eggs - Bacon (co-occurence), Snore - Sleep (setting), Wet - Desert (antonymy), Work -Lazy (exclusivity), Banana - Kiwi (likeness).

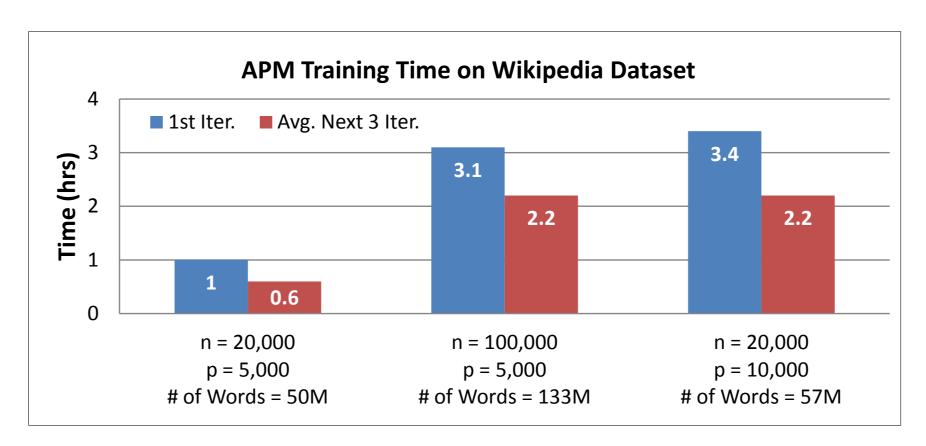
. Split the algorithm into alternating steps ▶ Posterior is convex in W or  $(\theta^{1...k}, \Theta^{1...k})$  but not both Similar to EM for mixture models or ALS for NMF

$$\begin{aligned} \underset{\Phi^{2}, \cdots, \Phi^{p}}{\operatorname{grin}} &- \frac{1}{n} \sum_{s=1}^{p} \left[ \operatorname{tr}(\tilde{\mathbf{Z}}^{s} \Phi^{s}) - \sum_{i=1}^{n} \exp(\mathbf{z}_{i}^{T} \Phi^{s} \mathbf{w}_{i}) \right] + \sum_{s=1}^{p} \lambda \|\operatorname{vec}(\Phi^{s})_{\setminus 1}\|_{1} \\ \underset{p_{i}, \cdots, \mathbf{w}_{n} \in \Delta^{k}}{\operatorname{grin}} &- \frac{1}{n} \sum_{i=1}^{n} \left[ \psi_{i}^{T} \mathbf{w}_{i} - \sum_{s=1}^{p} \exp(\mathbf{z}_{i}^{T} \Phi^{s} \mathbf{w}_{i}) \right] \\ \underset{p_{i}, \cdots, \mathbf{w}_{n} \in \Delta^{k}}{\operatorname{where}} & \mathbf{z}_{i} = \left[ 1 \ \mathbf{x}_{i}^{T} \right]^{T} & \tilde{\mathbf{Z}}^{s} = f(X, \mathbb{W}) \\ & \phi_{s}^{j} = \left[ \theta_{s}^{j} \left( \Theta_{s}^{j} \right)^{T} \right]^{T} & \psi_{i} = f(X, \Phi^{1...k}) \end{aligned}$$

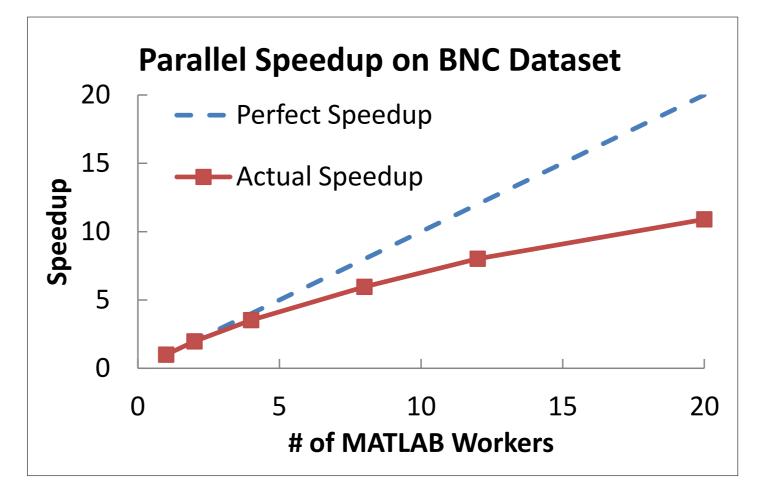
 $\Phi^s = [\phi^1_s \, \phi^2_s \cdots \phi^k_s]$ 2. Use proximal Newton-like method [Hsieh et al. 2014] . Simplify Newton step computation [Hsieh et al. 2014] Compute Hessian entries only for non-zero/free parameters

\* Code available at: http://bigdata.ices.utexas.edu/software/apm/

#### Timing Results on Wikipedia



## Parallel Speedup on BNC Corpus



## **Evocation Metric**

|                                                                                                                                                                                                                                            | Ra     | ink by m | odel | weights <i>M</i>        | Sur | n top- <i>m</i> | hum | an scores <i>I</i>      | Ч              |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------|-------------------------|-----|-----------------|-----|-------------------------|----------------|-------|
| Word Pair                                                                                                                                                                                                                                  | Я      | М        |      | Word Pair               | H   | М               |     | Word Pair               | ${\mathcal H}$ | М     |
| $w1 \leftrightarrow w2$                                                                                                                                                                                                                    | ?      | 0.01     |      | $w2 \leftrightarrow w3$ | ?   | 12.4            |     |                         |                |       |
| w1 ↔ w3                                                                                                                                                                                                                                    | 23     | 0.1      |      | $w3 \leftrightarrow w4$ | 5   | 1.1             |     | $w3 \leftrightarrow w4$ | 5              | 1.1   |
| w1 $\leftrightarrow$ w4                                                                                                                                                                                                                    | 0      | 0.001    |      | $w2 \leftrightarrow w4$ | 60  | 0.67            |     | w2 ↔ w4                 | 60             | 0.67  |
| $w2 \leftrightarrow w3$                                                                                                                                                                                                                    | ?      | 12.4     |      | w1 ↔ w3                 | 23  | 0.1             |     | w1 ↔ w3                 | 23             | 0.1   |
| $w2 \leftrightarrow w4$                                                                                                                                                                                                                    | 60     | 0.67     |      | w1 ↔ w2                 | ?   | 0.01            |     |                         |                |       |
| $w3 \leftrightarrow w4$                                                                                                                                                                                                                    | 5      | 1.1      |      | w1 ↔ w4                 | 0   | 0.001           |     | w1 ↔ w4                 | 0              | 0.001 |
| m = Number of top word pairs to evaluate<br>$\mathcal{H} =$ Human-evaluated scores for <u>subset</u> of word pairs<br>$\mathcal{M} =$ Corresponding weights induced by model<br>$\pi_{\mathcal{M}}(j) =$ Ordering induced by $\mathcal{M}$ |        |          |      |                         |     |                 |     |                         |                |       |
| πд                                                                                                                                                                                                                                         | л(J) = |          |      |                         |     |                 |     |                         |                |       |
| so that $\mathcal{M}_{\pi(1)} \geq \mathcal{M}_{\pi(2)} \geq \cdots \geq \mathcal{M}_{\pi( \mathcal{H} )}$                                                                                                                                 |        |          |      |                         |     |                 |     |                         |                |       |
| $Evoc_m(\mathcal{M},\mathcal{H}) = \sum_{j=1}^m \mathcal{H}_{\pi_\mathcal{M}(j)}$                                                                                                                                                          |        |          |      |                         |     | (Evo            | C   | ation fc                | or <u>Si</u>   | ngle  |

### **Evocation Metric Results**

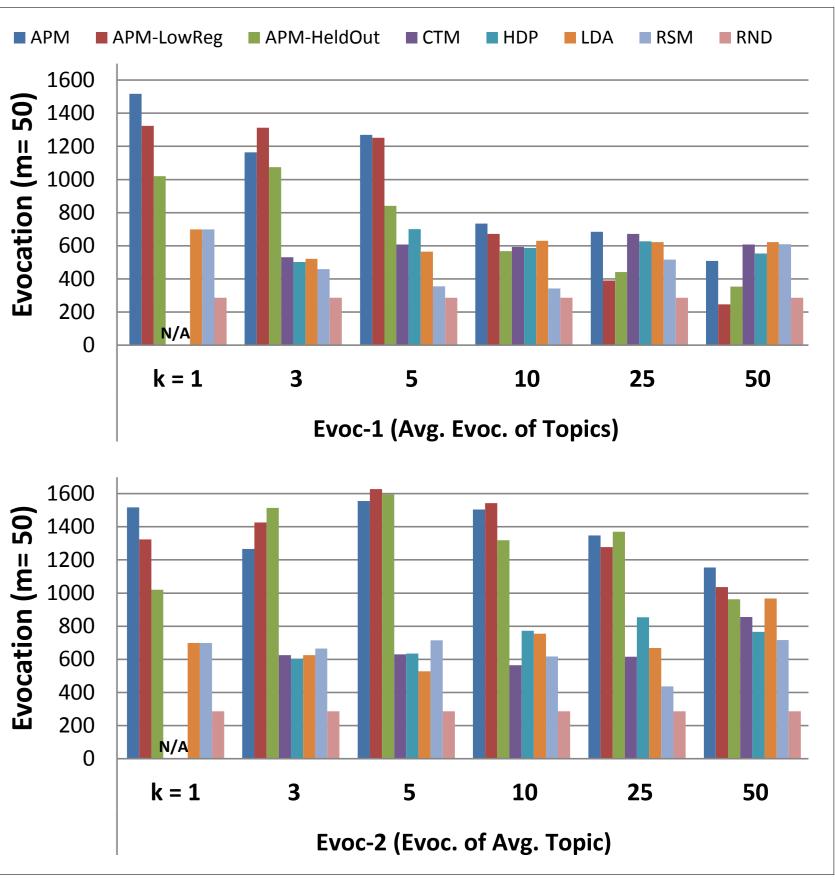
| ( |   |   |
|---|---|---|
|   | ( |   |
|   | I |   |
|   | Ş |   |
|   |   |   |
|   | 2 |   |
| • | Ì |   |
|   | ( | l |
|   | Ì |   |
| 1 |   |   |
| • |   |   |
|   |   |   |

# Qualitative Analysis of Evocation

| Best LDA Model ( $k = 50$ ) |                                              |  | Best APM Model ( $k = 5$ ) |                                          |  |  |
|-----------------------------|----------------------------------------------|--|----------------------------|------------------------------------------|--|--|
| Human<br>Score              | Word Pair                                    |  | Human<br>Score             | Word Pair                                |  |  |
| 100                         | $run.v \leftrightarrow car.n$                |  | 100                        | $telephone.n \leftrightarrow call.n$     |  |  |
| 82                          | teach.v ↔ school.n                           |  | 97                         | husband.n ↔ wife.n                       |  |  |
| 69                          | school.n $\leftrightarrow$ class.n           |  | 82                         | residential.a $\leftrightarrow$ home.n   |  |  |
| 63                          | $van.n \leftrightarrow car.n$                |  | 76                         | politics.n $\leftrightarrow$ political.a |  |  |
| 51                          | hour.n $\leftrightarrow$ day.n               |  | 75                         | steel.n ↔ iron.n                         |  |  |
| 50                          | teach.v ↔ student.n                          |  | 75                         | job.n ↔ employment.n                     |  |  |
| 44                          | $house.n \leftrightarrow government.n$       |  | 75                         | room.n $\leftrightarrow$ bedroom.n       |  |  |
| 44                          | week.n $\leftrightarrow$ day.n               |  | 72                         | $aunt.n \leftrightarrow uncle.n$         |  |  |
| 38                          | university.n $\leftrightarrow$ institution.n |  | 72                         | printer.n $\leftrightarrow$ print.v      |  |  |
| 38                          | state.n $\leftrightarrow$ government.n       |  | 60                         | $love.v \leftrightarrow love.n$          |  |  |
| 38                          | woman.n ↔ man.n                              |  | 57                         | question.n $\leftrightarrow$ answer.n    |  |  |
| 38                          | give.v $\leftrightarrow$ church.n            |  | 57                         | prison.n $\leftrightarrow$ cell.n        |  |  |
| 38                          | wife.n $\leftrightarrow$ man.n               |  | 51                         | mother.n $\leftrightarrow$ baby.n        |  |  |
| 38                          | engine.n $\leftrightarrow$ car.n             |  | 50                         | $sun.n \leftrightarrow earth.n$          |  |  |
| 35                          | publish.v ↔ book.n                           |  | 50                         | west.n $\leftrightarrow$ east.n          |  |  |
| 32                          | west. $n \leftrightarrow$ state. $n$         |  | 44                         | weekend.n ↔ sunday.n                     |  |  |
| 32                          | year.n ↔ day.n                               |  | 41                         | wine.n $\leftrightarrow$ drink.v         |  |  |
| 25                          | member.n $\leftrightarrow$ give.v            |  | 38                         | south.n $\leftrightarrow$ north.n        |  |  |
| 25                          | dog.n $\leftrightarrow$ animal.n             |  | 38                         | morning.n $\leftrightarrow$ afternoon.n  |  |  |
| 25                          | seat.n $\leftrightarrow$ car.n               |  | 38                         | engine.n $\leftrightarrow$ car.n         |  |  |

Red highlights pairs that seem semantically uninteresting Blue highlights pairs that seem semantically interesting

opic)  $\mathsf{Evoc-1} = \sum_{i=1}^{\kappa} rac{1}{k} \mathsf{Evoc}_m(\mathcal{M}^j, \mathcal{H})$ (Avg. Evoc. of Topics)  $\mathsf{Evoc-2} = \mathsf{Evoc}_m(\sum_{k=1}^{\kappa} \frac{1}{k} \mathcal{M}^j, \mathcal{H})$ (Evoc. of Avg. Topic)



▶ Word pairs for Evoc-2 (m = 50) ordered by human score