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L ~ Poisson, x ~ Multinomial(L)  ≡  x ~ Ind. Poissons

What if we replace the Multinomial with 
a Fixed-Length Poisson MRF (LPMRF)?
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Figure : The Fixed-Length Poisson MRF (LPMRF) can replace the Multinomial
by relaxing the independence assumption and allowing for positive and negative
dependencies between words (or more generally between covariates).

Illustration with Real Documents
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Figure : The simple empirical distribution clearly shows a strong dependency
between “boundary” and “layer” but strong negative dependency of
“boundary” with “library”. Clearly, the word-independent Multinomial-Poisson
distribution underfits the data. While the Truncated PMRF can modeled
dependencies, it obviously has normalization problems because the
normalization is dominated by the edge case. The LPMRF-Poisson distribution
much more appropriately fits the empirical data.

Background: Poisson as Exp. Family
The standard Poisson(λ) can be transformed into an exponential
family distribution with natural parameter η:

Pr
Poiss

(x |λ) =
λx

x!
exp(−λ) = exp(log(

λx

x!
)) exp(−λ)

= exp(log(λx)−log(x!)−λ) = exp(log(λ)x−log(x!)−λ)

= exp( ηx︸︷︷︸
log(λ)≡η

−log(x!)− exp(η)︸ ︷︷ ︸
λ≡exp(η)

).

Background: Poisson MRF
By assuming that the conditional distribution of a variable xs
given all other variables x\s is a univariate Poisson, a joint
Poisson distribution can defined [Yang et al. 2012]:

Pr
PMRF

(x |θ,Φ) ∝ exp

{
θTx + xTΦx−

p∑
s=1

log(xs!)

}
,

where θ ∈ Rp and Φ ∈ {Rp×p : diag (Φ) = 0}.
Node conditionals (i.e. the distribution of one word given all
other words) are 1-D Poissons:

Pr(xs | x−s, θs,Φs) ∝ exp{ (θs + xTΦs︸ ︷︷ ︸
ηs

) xs − log(xs!) }.

Fixed-Length PMRF (LPMRF)

Pr
LPMRF

(x|θ,Φ, L) = exp(θTx+xTΦx−
∑

slog(xs!)−AL(θ,Φ))

AL(θ,Φ) = log
∑
x∈XL

exp(θTx + xTΦx−
∑

s log(xs!))

XL = {x : x ∈ Zp
+, ‖x‖1 = L}

Note that the only—but critical—difference from the PMRF
parametric form is the log partition function AL(θ,Φ) which is
conditioned on the set XL (unlike the unbounded set for PMRF).

Extension to Topic Models
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Single Mixture Topic Model
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Figure : Topic models can be viewed as an extension of mixture models that
allow words in the same document to come from different topics.

We generalize topic models using fixed-length distributions:

Generic Topic Model LPMRF Topic Model

wi ∼ SimplexPrior(α) wi ∼ Dirichlet(α)

Li ∼ LengthDist(L̄) Li ∼ Poisson(λ = L̄)

mi ∼ PartitionDist(wi , Li) mi ∼ Mult(p=wi ;N =Li)

zji ∼ FixedLength(φj ; ‖zji‖=mj
i ) zji ∼ LPMRF(θj ,Φj ;N =mj

i )

xi =
∑k

j=1 z
j
i xi =

∑k
j=1 z

j
i .

Log Partition Function (Likelihood)
LPMRF Gibbs Sampling
I Multinomial = Sum of individual variables drawn i.i.d.

I LPMRF = Sum of individual variables with conditional
dependence

I Conditional distribution of one word given all other words:

Pr(w` = es |w1, . . . ,w`−1,w`+1, . . . ,wL,θ,Φ)

∝ exp(θs + 2Φsx−`).

LPMRF Annealed Importance Sampling

Figure : Annealed importance sampling starts from a well-known simple
distribution (in our case a Multinomial distribution) and slowly moves toward
the target distribution recording importance weights between each transition.
This sampling can be used to approximate the log partition function.

Upper Bound on Log Partition

AL(θ,Φ) ≤ L2λΦ,1 + Llog(
∑

s e
θs)− log(L!).

Generalize to Multiple L

I What if we want estimates for different values of L?

I Introduce weighting function:

ω(L) = 1− LogLogisticCDF(L |αLL, βLL)

where αLL ∈ [2, 3] and βLL = 2 so that tail is O(1/L2).

Figure : (Left) Quadratic upper bound. (Middle) Sigmoid weighting function
based on Log Logistic CDF. (Right) Final functional form of log partition
function for various L with weighting function.

Final Approximation
I 5,000 AIS samples - 100 AIS samples for 50 different test values

of L linearly spaced between the 0.5L̄ and 3L̄.
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Figure : Example of log partition estimation for all values of L.

Perplexity Results
Perplexity = exp(−L(X test|θ1...k,Φ1...k)/Ntest)

(The inverse of the geometric mean of the per-word likelihood)
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Mult LPMRF LDA 

Figure : The LPMRF models always outperform the corresponding Multinomial
models. However, the well-developed LDA topic model is competitive for larger
number of topics.

Timing Results
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Timing for Poisson Regressions 
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Timing for AIS Sampling 
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Timing for Fitting Topic Matrices 
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Figure : (Top Left) The timing for fitting p Poisson regressions shows an
empirical scaling of O(np). (Top Right) The timing for fitting topic matrices
empirically shows scaling that is O(npk2). (Bottom) The timing for AIS
sampling shows that the sampling is approximately linearly scaled with the
number of non-zeros in Φ irrespective of p.

Qualitative Analysis of LPMRF
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