r‘a THE UNIVERSITY OF TEXAS AT AUSTIN
INd Department of Computer Science

LPMRF Overview
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Background: Poisson as Exp. Family
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Background: Poisson MRF

By assuming that the conditional distribution of a variable x;
given all other variables x is a univariate Poisson, a joint
Poisson distribution can defined [Yang et al. 2012]:

p
P ¢ r Tox — Y log(x!
F)MFr{F(x|l9, ) o< expg @' x+ x' dx ; og(xs!) ¢,

where 8 € RP and ® € {RP*P : diag (P) = 0}.
Node conditionals (i.e. the distribution of one word given all
other words) are 1-D Poissons:
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Fixed-Length PMRF (LPMRF)

P (x]0,®, 1) = exp(0 " x+x"dx—3 Jog(x:!) —AL(6, P))
AL(6,®) =log ) exp(87x +x"dx — 3 log(x!))

xeX

X = {x:x €z, x| = L}

Note that the only—but critical—difference from the PMRF
parametric form is the log partition function A;(@, ®) which is

What if we replace the Multinomial with
a Fixed-Length Poisson MRF (LPMRF)?
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Figure : The Fixed-Length Poisson MRF (LPMRF) can replace the Multinomial EXtenSIOn tO TOPIC MOdelS

by relaxing the independence assumption and allowing for positive and negative
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dependencies between words (or more generally between covariates). Single I Mixture Topic Model
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Figure : Topic models can be viewed as an extension of mixture models that

allow words in the same document to come from different topics.

We generalize topic models using fixed-length distributions:

LPMRF Topic Model
w; ~ Dirichlet(«)

boundary

library boundary library

Figure : The simple empirical distribution clearly shows a strong dependency
between “boundary” and “layer’ but strong negative dependency of

Generic Topic Model
w; ~ SimplexPrior(«)

“boundary” with “library”. Clearly, the word-independent Multinomial-Poisson L: ~ _engthDist(Z) L; ~ Poisson(\ = ')
jistrib(l;tior-\ un.derfli)tsf theI dEta. Whilellthe. Trunczlajtled PII\J/IRF can hmodeled m; ~ PartitionDist(w;, L;) m; ~ Mult(p=w;: N=L,)
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ependencies, it obviously has normalization problems because the 2 ~ FixedLength(¢: |2/]| = m) 2 ~ LPMRF(6/, /: N = )

normalization is dominated by the edge case. The LPMRF-Poisson distribution
much more appropriately fits the empirical data.
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conditioned on the set X (unlike the unbounded set for PMRF).
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Perplexity Results
Perplexity _ exp(_ﬁ(Xtest‘Hl...k, cblmk)/Ntest)

(The inverse of the geometric mean of the per-word likelihood)
Wikipedia

Log Partition Function (Likelihood)

LPMRF Gibbs Sampling
» Multinomial = Sum of individual variables drawn i.i.d.

» LPMRF = Sum of individual variables with conditional

Classic3

dependence
» Conditional distribution of one word given all other words: z z
Priw, = es | w1, ..., W/ 1,Wgiq,..., W, 0,0) 8 8
ox exp(Bs + 2P,x ).
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Figure : The LPMRF models always outperform the corresponding Multinomial
models. However, the well-developed LDA topic model is competitive for larger
number of topics.

Figure : Annealed importance sampling starts from a well-known simple
distribution (in our case a Multinomial distribution) and slowly moves toward
the target distribution recording importance weights between each transition.
This sampling can be used to approximate the log partition function.

Timing Results

Timing for Poisson Regressions
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Timing for AIS Sampling

Upper Bound on Log Partition
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» What if we want estimates for different values of L? L ' 0 ;)'m USRI
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» Introduce weighting function:
w(L) =1 — LoglogisticCDF(L | arr, Ory)
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Timing for Fitting Topic Matrices
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Figure : (Top Left) The timing for fitting p Poisson regressions shows an
empirical scaling of O(np). (Top Right) The timing for fitting topic matrices
empirically shows scaling that is O(npk?). (Bottom) The timing for AIS
sampling shows that the sampling is approximately linearly scaled with the
number of non-zeros in @ irrespective of p.
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Figure : (Left) Quadratic upper bound. (Middle) Sigmoid weighting function
based on Log Logistic CDF. (Right) Final functional form of log partition
function for various L with weighting function.

Final Approximation

» 5,000 AIS samples - 100 AIS samp|e§ for 50_different test values Qualitative Ana |ySiS Of LPM RF
of L linearly spaced between the 0.5L and 3L.
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