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Motivation 1: Non-Gaussian Data

| Square Root Graphical Models: Multivariate
Department of Computer Science Generalizations of Univariate Exponential Families

Real-Valued Continuous Data
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Non-Negative Data
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» Problem: What is the appropriate graphical model for count
data and non-negative skewed data?

» Proposal: General graphical models for any univariate
exponential family with positive sufficient statistics

Motivation 2: Graphical Models from
(Besag 1974, Yang et al. 2012)
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SQR Conditional Distributions

Various Normalization Conditions

» Node conditional: Distribution of one variable given the others
» Radial conditional: Distribution of scaling given the direction

033 0.35 » Gaussian SQR with T(x) = x*: Standard positive-definite
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- . » Poisson SQR: No restrictions on parameter values (i.e. any

| | positive or negative values in ® permitted)
02 02 > Informally, this is because the base measure is O(—xlogx) while the other
* o1s o1 terms are O(x) and thus any parameters are permitted

» Exponential SQR: Permits both positive and negative
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dependencies with the following condition akin to a
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SQR Quantitative Results

» Synthetic: Constructed chain-like graphs where the edge
strength was 0.9/k and p = 30. Higher k is much more difficult
for two reasons:

SQR Node Condtionals

» Generalizes any univariate exponential family (such as Poisson

or exponential) with sufficient statistic T(x), base measure
B(x) and domain D

T(x): RP — RP = Entry-wise application of T(x)
Pr(x|6, ) (1)
— exp (eTT(x) 1) OT(x) + > B(x) — A6, <|>))

2)

— log / exp (eTT(x) +T(x)ToT(x) + Ep: B(xs)) dju(x)

D s=1

A8, )

® =" € RP*P .. = 0 Vs (no self-edges)
1t = either Lebesgue or counting measure

» Discrete and Gaussian graphical models are special cases

» Problem: Only negative dependencies for the Poisson and
exponential models (informally because interaction is O(T(x)?))

» Proposal: Graphical models that permit positive and negative
dependencies with a simple but elegant modification

Square Root Graphical Model (SQR)

1. More edges (i.e. kp edges)
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0.05 7 Figure : (Left) Synthetic chain graph with k = 1. (Right) Synthetic
0 . 0 chain-like graph with k = 2 so that each node is connected to its first and
0 1 2 3 5 10 second neighbors.

» Airport delay dataset: Average delay times per day for the
largest 30 airports in 2014 (p = 30,n = 365)
» Joint log partition function estimated using AlS sampling (Gibbs
intermediate sampler with slice sampling for node conditionals)

» [wo-parameter exponential family:

Pr(xs [ x1. ®) = exp( 0 T(6) (054207 T(x) /T(x)
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M ix) - To(xe) » Relative Likelihood Metric: exp((Lsqr — Lind)/n), where L is the log
likelihood.
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» Allows both positive and negative dependencies.

» Main intuition is that interaction term is O(T(x)) so that
A(B, P) < oo even with positive dependencies.
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Positive Exp. SQR

Negative Exp. SQR

Negative Poisson SQR

Figure © The SQR model class that can intuitively model positive and
negative dependencies while having a simple parametric form.
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» As in [Ravikumar et al. 2010, Yang et al. 2015], we fit p 0
indepedent (1-regularized node-wise regressions:
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Figure : (Left) The top-kp edge precision for a synthetic circular chain-like
graph. (Right) Relative log likehood results on the airport dataset of the
exponential SQR compared to an independent exponential model.

Visualization of Top 50 SQR Edges
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» Main difficulty: A(n1,7,) usually not known in closed-form
» However, A(ny, ) for the exponential SQR is simply:

<ﬁm exp (72)(1—erf(572)) 1)
—2(—771)% m)
» Proximal gradient descent (though new arXiv paper uses
Newton-like method)

SQR Radial Conditionals

» For simplicity, let T(x) = x, v = m z = ||x]|1

AExp(n) — 10g

Figure :© Visualizing the top 50 edges between airports shows the expected
relationships likely due to weather or physical locality even though the
algorithm was not provided any weather or location data.

» Assume direction v is given, but scaling z is unknown:

Pr(x = zv|v,0,®) = exp ((\/VTGD\N)\Z/Jr@\\CZ/
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By(z) A(71,772) » arXiv paper “Generalized Root Models”
» k-wise dependencies using k-th root sufficient statistics
» Approximation algorithm for Poisson SQR

» Fast Newton-like algorithm
» Comparison to other multivariate models
» Poisson SQR allows strong positive and negative dependencies

Log Normal Mix.
r=0.60 »=0.38 =0.33

» Similar to node conditional form but with different parameters

Joint Normalization using Radial

Conditionals

Copula
r=1.00 p=1.00 r=1.00

Copula
r=-0.68 p=-0.82 r=-0.74

Log Normal Mix.
r=-0.22 p=-0.31 r=-0.27
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V= {v:|vl=LveR)
Z(v)={ze R, :zv e Dj}.

A6.0) = log | [exp(ib(v)z + WV + Bu(z))dnz) dv:
V Z(v)

Poisson SQR
r=1.00 p=1.00 r=1.00

TPGM
r=-0.52 p=-0.73 r=-0.63

TPGM
r=0.76 ;»=0.33 r=0.30

Poisson SQR
r=-0.53 p=-0.73 7=-0.63

» Because V is bounded, we merely need that the radial
conditional distribution is normalizable (i.e. A.q(71, 72) < o),
which depends on the base univariate exponential family
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