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Motivation 1: Non-Gaussian Data

Real-Valued Continuous Data

Non-Negative DataInteger Count Data

http://advan.
physiology.
org/content/34/
4/186

Multivariate Gaussian

I Problem: What is the appropriate graphical model for count
data and non-negative skewed data?

I Proposal: General graphical models for any univariate
exponential family with positive sufficient statistics

Motivation 2: Graphical Models from
(Besag 1974, Yang et al. 2012)

I Generalizes any univariate exponential family (such as Poisson
or exponential) with sufficient statistic T(x), base measure
B(x) and domain D

T(x) : Rp → Rp = Entry-wise application of T(x)

Pr(x|θ,Φ) (1)

= exp
(
θTT(x) + T(x)TΦT(x) +

p∑
s=1

B(xs)− A(θ,Φ)
)

A(θ,Φ) (2)

= log

∫
D
exp
(
θTT(x) + T(x)TΦT(x) +

p∑
s=1

B(xs)
)
dµ(x)

Φ = ΦT ∈ Rp×p, φss = 0 ∀s (no self-edges)

µ = either Lebesgue or counting measure

I Discrete and Gaussian graphical models are special cases

I Problem: Only negative dependencies for the Poisson and
exponential models (informally because interaction is O(T(x)2))

I Proposal: Graphical models that permit positive and negative
dependencies with a simple but elegant modification

Square Root Graphical Model (SQR)

Pr(x |θ,Φ) (3)

= exp
(
θT
√

T(x) +
√

T(x)
T

Φ
√

T(x) +
∑
s

B(xs)− A(θ,Φ)
)

A(θ,Φ) (4)

= log

∫
D
exp
(
θT
√

T(x) +
√

T(x)
T

Φ
√

T(x) +
∑
s

B(xs)
)
dµ(x)

Φ = ΦT ∈ Rp×p, φss ∈ R ∀s (self-edges allowed)(√
T(x)

)
s
≡
{
xs if T(xs) = x2

s√
T(xs) otherwise

∀s

I Allows both positive and negative dependencies.

I Main intuition is that interaction term is O(T(x)) so that
A(θ,Φ) <∞ even with positive dependencies.
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Figure : The SQR model class that can intuitively model positive and
negative dependencies while having a simple parametric form.

SQR Conditional Distributions

Node Conditional 
Distributions

Radial Conditional 
Distributions

I Node conditional: Distribution of one variable given the others

I Radial conditional: Distribution of scaling given the direction

SQR Node Condtionals
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ITwo-parameter exponential family:

Pr(xs | x−s,Φ) = exp
(
φss︸︷︷︸
η1

T(xs)︸ ︷︷ ︸
T̃1(xs)

+
(
θs+2φT

−s
√

T(x−s)
)︸ ︷︷ ︸

η2

√
T(xs)︸ ︷︷ ︸

T̃2(xs)

+ B(xs)− A(x−s,Φ)︸ ︷︷ ︸
A(η1,η2)

)

Parameter Estimation using Node
Conditionals

I As in [Ravikumar et al. 2010, Yang et al. 2015], we fit p
indepedent `1-regularized node-wise regressions:

arg min
Φ
− 1

n

∑
s

∑
i

(
η1sixsi + η2si

√
xsi (5)

+ B(xsi)− Anode(η1si , η2si)
)

+ λ‖Φ‖1,off ,

η1si = φss, η2si = θ + 2φT
−s
√

T(x−si), ‖Φ‖1,off =
∑
s 6=t

|φst|

I Main difficulty: A(η1, η2) usually not known in closed-form

I However, A(η1, η2) for the exponential SQR is simply:

AExp(η) = log

(√πη1 exp
(−η22

4η1

)(
1−erf

( −η2
2
√
−η1

))
−2(−η1)

3
2

− 1

η1

)
,

I Proximal gradient descent (though new arXiv paper uses
Newton-like method)

SQR Radial Conditionals

I For simplicity, let T(x) = x, v = x
‖x‖1, z = ‖x‖1

I Assume direction v is given, but scaling z is unknown:

Pr(x = zv | v,θ,Φ) = exp
(

(
√

v
T

Φ
√

v)︸ ︷︷ ︸
η̄1

z︸︷︷︸
T̃1(z)

+ (θTv)︸ ︷︷ ︸
η̄2

√
z︸︷︷︸

T̃2(z)

+
∑p

s=1B(zvs)︸ ︷︷ ︸
B̃v(z)

−Arad(v,θ,Φ)︸ ︷︷ ︸
A(η̄1,η̄2)

)
I Similar to node conditional form but with different parameters

Joint Normalization using Radial
Conditionals

A(θ,Φ) = log

∫
V

∫
Z(v)

exp(η̄1(v)z + η̄2(v)
√
z︸ ︷︷ ︸

O(z)

+ B̃v(z)︸ ︷︷ ︸
O(B(z))

)dµ(z)

︸ ︷︷ ︸
Arad(η̄1,η̄2)

dv,

V = {v : ‖v‖1 = 1, v ∈ Rp
+}

Z(v) = {z ∈ R+ : zv ∈ D}.

I Because V is bounded, we merely need that the radial
conditional distribution is normalizable (i.e. Arad(η̄1, η̄2) <∞),
which depends on the base univariate exponential family

Various Normalization Conditions

I Gaussian SQR with T(x) = x2: Standard positive-definite
condition on covariance matrix

I Poisson SQR: No restrictions on parameter values (i.e. any
positive or negative values in Φ permitted)
I Informally, this is because the base measure is O(−x logx) while the other

terms are O(x) and thus any parameters are permitted

I Exponential SQR: Permits both positive and negative
dependencies with the following condition akin to a
negative-definite condition (V contains all positive vectors):

ΦExp ∈ {Φ :
√

v
T

Φ
√

v < 0,∀v ∈ V} .

SQR Quantitative Results

I Synthetic: Constructed chain-like graphs where the edge
strength was 0.9/k and p = 30. Higher k is much more difficult
for two reasons:
1. More edges (i.e. kp edges)
2. Edges are weaker (i.e. 0.9/k per edge)
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Figure : (Left) Synthetic chain graph with k = 1. (Right) Synthetic
chain-like graph with k = 2 so that each node is connected to its first and
second neighbors.

I Airport delay dataset: Average delay times per day for the
largest 30 airports in 2014 (p = 30,n = 365)
I Joint log partition function estimated using AIS sampling (Gibbs

intermediate sampler with slice sampling for node conditionals)
I Relative Likelihood Metric: exp((LSQR − LInd)/n), where L is the log

likelihood.
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Figure : (Left) The top-kp edge precision for a synthetic circular chain-like
graph. (Right) Relative log likehood results on the airport dataset of the
exponential SQR compared to an independent exponential model.

Visualization of Top 50 SQR Edges

Figure : Visualizing the top 50 edges between airports shows the expected
relationships likely due to weather or physical locality even though the
algorithm was not provided any weather or location data.

Current Work
I arXiv paper “Generalized Root Models”

I k-wise dependencies using k-th root sufficient statistics
I Approximation algorithm for Poisson SQR
I Fast Newton-like algorithm

I Comparison to other multivariate models
I Poisson SQR allows strong positive and negative dependencies
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