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Abstract

Existing research on label noise often focuses on simple uniform or class-
conditional noise. However, in many real-world settings, label noise is often
somewhat systematic rather than completely random. Thus, we first propose a
novel label noise model called Localized Label Noise (LLN) that corrupts the
labels in small local regions and is significantly more general than either uniform
or class-conditional label noise. LLN is based on a k-nearest neighbors corruption
algorithm that corrupts all neighbors to the same wrong label and reduces to a
class-conditional label noise if k = 1. Given this more powerful model of label
noise, we propose an empirical hyperparameter selection method under LLN that
selects better hyperparameters than traditional selection strategies, such as cross
validation, by synthetically corrupting the training labels while leaving the test
labels unmodified. This method can provide an approximate and more robust
validation for hyperparameter selection. We design several label corruption ex-
periments on both synthetic and real-world data to demonstrate that our proposed
hyperparameter selection yields better estimates than standard methods.

1 Introduction

Most previous work on label noise has focused on uniform [1–4] or class-conditional label noise
[4–10].1 Uniform label noise assumes that the probability of corruption is independent of both the
true label while class-conditional label noise allows the corruption probability to depend on the true
label. However, in many real-world settings, the label noise is not uniformly random but rather locally
systematic. For example, in an e-commerce setting, suppose a merchant sets the default category for
their products to be “Computers” but fails (for lack of effort or by accident) to change the category to
“Media” for all their DVDs; this error would cause all of their DVDs to be labeled incorrectly—a local
but systematic label noise. Shen et al. [16] suggest that even when merchants manually select the
category for every item, they make approximately 15% error largely because of category ambiguity.
Or as another example, hand-crafted rules may be used to label data in large batches so as to reduce
labeling effort; however, many simple hand-crafted rules may introduce systematic errors in the
labels. As a concrete example, suppose that any product with “ring” in the title is classified as jewelry;
while this rule may provide reasonable accuracy, hardware items like “sealant ring” would all be
misclassified into jewelry. In e-commerce, this label corruption problem can cause significant revenue
loss because users are likely to become confused and navigate away from the website [16].

∗A majority of this work was done during a summer internship at Rakuten Institute of Technology, Boston.
1 Some recent work has considered cases of feature-dependent label noise [8, 11–13] or even adversarial

label noise [14, 15] but is either primarily theoretical [8, 12, 14] or model-specific [8, 11, 13–15], where our
proposed label noise model is empirically-driven and model-agnostic as will be described in future sections.
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Figure 1: Quadruple moon toy dataset before corruption (left) and after localized label corruption
(right), which yields systematic noise in local regions.

In light of this mismatch between uniform label noise and locally systematic label noise, we propose a
corruption algorithm based on k-nearest neighbors that generates locally systematic label noise. Fig. 1
shows a toy dataset with true clean labels on the left and a corrupted version of the dataset on the right.
Note that small localized regions of the data are corrupted together, e.g. five nearby points in one class
are all corrupted to another class. This simple corruption algorithm implies a powerful generative
model for localized label noise that we develop in the following sections. The harder question then
is that, given such localized label corruption phenomenon, how might we train models to handle
this label noise? Frenay and Verleysen [4] present three main approaches to handling label noise:
(1) robust methods that are naturally robust to label noise but do not explicitly model label noise,
(2) data cleansing methods that attempt to identify and remove corrupt labels before classification,
and (3) noise-tolerant methods that jointly model the label noise and classification model. Our
proposed method most closely follows approach (1) but can be applied to any classification model
that has a complexity hyperparameter such as k in KNN, tree depth in decision tree, or regularization
parameters in SVMs. In contrast to our proposed model-agnostic method, methods summarized in
[4, Sec. V] are tied to certain loss functions (e.g. 0-1 loss), models (e.g. linear models) or algorithms
(e.g. ensemble methods). From another viewpoint, we propose a method for estimating relative
generalization error for hyperparameter selection that is less biased than traditional methods such as
cross validation. In fact, Frenay and Verleysen [4] suggest that choosing hyperparameters under label
noise is still an open problem. We make an attempt at resolving this important gap in the literature.

We summarize our two primary contributions as follows: (1) A novel model for systematic localized
label noise including an empirical algorithm and probabilistic generative model, and (2) a novel label-
noise-aware validation method that can be applied to make any classification method more robust to
label noise. We believe these two contributions are complementary but can be used independently of
each other and open up new research directions in both areas.

2 Localized Label Noise

We first present our localized corruption algorithm based on k-nearest neighbors. We then describe
the probabilistic generative label noise model implied by the algorithm. Throughout this paper,
we assume that we there exist n i.i.d. samples of a d-dimensional feature vector x ∈ Rd and
corresponding true clean but hidden label y ∈ {1, 2, . . . , J}; X ∈ Rn×d and y ∈ {1, 2, . . . , J}n
denote all n samples. We assume that the training algorithm only observes a corrupted version of the
label denoted yc ≡ c(y) rather than the true label y.

Algorithm We describe a simple base corruption algorithm to build intuition, and then we will
extend it to the full algorithm. Let us denote the total corruption rate or amount as π, e.g. π = 0.2
corresponds to 20% of the labels being corrupted. First, we initialize corrupt labels to the clean labels
yc = y and corruption sets C(j) = ∅. Then, for all class values j = 1, · · · , J and while |C(j)|/n < π:

1. Sample data point x̃ uniformly from the set X(j) ≡ {xi : yi = j}
2. Compute the k-size neighborhood of x̃ in the set X(j) denoted N (j)(x̃), which includes x̃
3. Sample corrupted label ỹ uniformly from all labels except the j-th label
4. Corrupt all labels in neighborhood N (j)(x̃): [yc]N (j)(x̃) ← ỹ
5. Update corrupted set: C(j) ← C(j) ∪N (j)(x̃)

Note that the user must specify k, which is not necessarily intuitive to estimate. Thus, we reparame-
terize this process by normalizing by the number of observations, i.e. µ = k/n, so that the user only
needs to specify an approximate percentage of observations that tend to be corrupted together. For
example, a data vendor may estimate their overall corruption rate as π = 15% with local regions of
size µ = 0.5% may be corrupted together. This parameterization avoids having to manually scale
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the algorithm based on the number of observations. Additionally, we can allow µ, a proportion
parameter, to follow the Beta distribution with standard deviation σ. Thus our algorithm only requires
three relatively intuitive parameters: total corruption percentage π (e.g. 10%), mean local corruption
percentage µ (e.g. 1%), and standard deviation of local corruption percentage σ (e.g. 0.5%).2

Generative Model Building on the intuitions from the simple algorithm above, we now derive the
implied population-level probabilistic generative model.3 We assume the distribution of x given y
is fixed but unknown and is denoted by θ. We also define the following epsilon ball given a point
and a probability to cover: B(x̃, δ) = Bε(x̃) = {x : ‖x − x̃‖ ≤ ε} such that P(x ∈ Bε(x̃)) = δ.
Essentially, this is the unit ball in the feature space centered around x̃ whose probability is exactly δ.
With this notation, we define the localized label noise model via a generative graphical model:

1. For j = 1, . . . , J and for ` = 1, 2, . . .
(a) Sample x̃j` ∈ Rd from the conditional data distribution given y = j
(b) Sample labels ỹj` from a uniform distribution with all labels except j
(c) Sample δ̂ from a Beta distribution parameterized by mean µ and standard deviation σ
(d) Set δj` = min(δ̂, π − P(x ∈ C(j) | y)) to ensure the corruption does not exceed π
(e) Update corruption set by new corrupt ball: C(j) → C(j) ∪ B(x̃j`, δj`)
(f) If P(x ∈ C(j)) = π, break inner loop, set the number of corruption points mj(π)← `

2. For i = 1, . . . , n
(a) Sample y ∈ {1, · · · , J} from prior class distribution
(b) Sample x ∈ Rd given the conditional distribution θy
(c) Set yc as below, where m ≡ my(π) is the number of corruption points

yc =


ỹy1 ,x ∈ B(x̃y1, δy1)
... ,

...
ỹym ,x ∈ B(x̃ym, δym) and x 6∈ ∪m−1a=1 B(x̃ya, δya)
y , otherwise (i.e. uncorrupted)

(1)

In Fig. 2, we compare our generative graphical model with the class-conditional and instance-
dependent label noise models.4 Note that while the label corruption for each instance is independent
in previous models, our label noise model induces global dependencies between labels.
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Figure 2: The graphical models of class-conditional label noise (left) and localized label noise (LLN)
(right) show that LLN is a significantly more complex label noise model that shares global parameters
across samples instead of being independent for each sample. π denotes the total percentage of
corruption. µ and σ are the mean and standard deviation of a Beta distribution. Note how δ essentially
becomes the percentage to corrupt together.

3 Corrupt Validation for Hyperparameter Selection

We will now consider hyperparameter evaluation methods and propose our method based
on synthetically corrupting the training labels while leaving the test labels unmodified. Let
c1(y |x) : {1, · · · , J} × Rd → {1, · · · , J} and c2(·) be label corruption functions. In a real world
scenario, c1(·) is the original unknown (or hidden) corruption and c2(·) is some sort of known

2Note that µ is the percentage that is corrupted simultaneously, not the volume in the feature space; thus, the
local region will have larger volume in a low density area than a local region in a high density area.

3This generative model is primarily to build intuitions about the noise algorithm because we do not attempt
to estimate the generative model; however, noise model estimation would be an interesting research direction.

4For clarity, we hide the implicit dependency of δj` on x̃ja and δja for a < ` via the auxiliary set C(j).
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synthetic corruption—in our case localized label corruption defined previously. We present two
oracle validation methods that require oracle access to the true hidden labels, and two corresponding
empirical validation methods that can actually be estimated from the observed data. We describe
these validation methods below and give a visual summary in Fig. 3.

X y

Unknown 
Label 

Corruption

X c1(y)

Known 
Label 

Corruption

X c2(c1(y))

(3) Standard validation

(4) Corrupt validation (Proposed)

Test

Train

(2) Clean test (Oracle)

(1) Clean train & test (Oracle)

c1(·) c2(·)

Hidden / Unknown Visible / Known

L(ytest, f(Xtest | X
train, c1(y)train ))

L(ytest, f(Xtest | X
train,ytrain)) L( c1(y)test, f(Xtest | X

train,c1(y)train))

L( c1(y)test, f(Xtest | X
train,c2(c1(y)train)))

Figure 3: (1) is an oracle (access to hidden clean labels y) method that assumes clean labels for
both train and test. (2) is an oracle method that assumes clean labels only for testing and is thus the
best hyperparameter estimator given only corrupted training labels. (3) is the traditional held-out
validation that naively ignores label corruption. (4) is our proposed corrupt validation method that we
suggest tracks the trends of method (2) more closely than (3), and thus selects better hyperparameters
assuming the algorithm only has access to corrupt labels. f(a | b) corresponds to a classifier prediction
of a given training data b and L is a loss function.

(1) Clean train & test (Oracle, train: y, test: y) Validation method if full oracle access to true
hidden labels is allowed for both for train and test. This is the classic academic setting where we
assume there is no label corruption. (2) Clean test (Oracle, train: c1(y), test: y) Validation method
that only requires oracle access to the true hidden labels for the testing or evaluation phase. This
method is the best that any validation model could do if the model can only train on corrupt labels.
The difference between (1) and (2) is the performance penalty for having label noise. (3) Standard
validation (train: c1(y), test: c1(y)) Traditional validation method that naively ignores the label
corruption. The underlying assumption is that this method mimics method (1). However, as we
will show, approximating method (1) is actually not the goal because the model must be trained on
corrupted labels rather than on the true (but hidden) labels. (4) Corrupt validation (train: c2(c1(y)),
test: c1(y)) Corrupt validation method where the training labels are synthetically corrupted before
training but the labels are left unmodified when evaluating the model. This validation attempts to
mimic method (2), and can be seen as a relative proxy validation for (2).5

4 Experiments

We empirically evaluate our proposed corrupt validation on two datasets: a synthetic toy dataset with
four moon-shaped classes from the introduction (d = 2, n = 1000, J = 4, see Fig. 1) and a real-
world sample of automatically-curated6 product catalog titles from a leading e-commerce company
(d = 82k, n = 1.2M,J = 29, see Fig. 1). In these experiments, we set c1 and c2 to be the same
localized label noise model using the simple empirical algorithm with π = 20%, µ = 2%, σ = 1%.7
We implemented the methods and experiments within the scikit-learn Python framework [17]. For
the toy dataset, we computed nested cross validation with three replications whereas we used a
simple nested train/test validation for the larger dataset of product catalogs. For space reasons, we

5While this provides a useful relative model selection criteria, this method does not necessarily provide useful
absolute performance estimates—estimating (2) correctly without true labels is still a significant open question.

6The curation has been done using manually crafted rules that yield high precision.
7An important open question is the sensitivity of the method to misspecification of c2 because c1 is usually

hidden or unknown.
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Figure 4: Average hyperparameter selection curves for various datasets and classification algorithms
(line graphs, vertical lines are at minimum) and the true held-out test performance on clean labels of
the best selected models (bar charts). (Left) Toy quadruple moons dataset. (Right) Product catalog
listings from a leading e-commerce company. Our proposed corrupt validation (orange bar) performs
better in terms of true held-out error than standard validation (blue bar)—where the gap is larger for
non-parametric models like KNN and decision trees. The oracle clean test validation (green bar) is the
best hyperparameter selection method if the final model can only be trained on corrupt labels. Note
that the validation curves are only used to select the hyperparameter with lowest error; thus, only the
relative error w.r.t. other hyperparameter values for each method is important. The hyperparameters
of the models for the toy dataset are self explanatory. Hyperparameter α for MultinomialNB is the
smoothing factor and α for SGD SVM is the L2 regularization constant.

only give results for KNN and decision trees for the toy dataset, and multinomial naive Bayes and
L2-regularized SVM using SGD for the product catalog dataset as can be seen in Fig. 4.

Across all the experiments on both datasets, the corrupt validation follows the general trends of the
oracle clean test validation method (method (2) from previous section) and thus selects hyperpa-
rameters that give better true generalization performance on the clean data (the bar charts in Fig. 4).
While the traditional validation approach does track with the oracle validation on clean test and train
data, this is suboptimal because the model can only be trained on corrupt labels—thus it is relative
performance estimates are overly optimistic. Intuitively, the traditional method begins to fit the noisy
labels when the model has high complexity whereas corrupt validation avoids overfitting the noisy
labels. Also, note that the non-parametric models KNN and decision tree are more likely to overfit
the label noise than the multinomial naive Bayes or linear SVM, which may be one reason linear
models are often used in the real-world situations. However, our corrupt validation method enables
the use of even non-parametric models in the presence of significant localized label noise.

5 Conclusion

We proposed a novel localized label noise model that is significantly stronger but often more realistic
than the most common uniform or class-conditional models. We then developed a hyperparameter
selection methodology that can be applied to any classification model to make it more robust to
localized noise. We think this opens up many new and interesting research directions both in terms of
label noise models and in terms of model validation under label noise. For example, how sensitive
is our hyperparameter selection method to label noise misspecification? What are other label noise
models could be used in the corrupt validation scheme that might better reflect real label noise? Can
this validation methodology be used to identify the most noisy labels? In general, we believe this
work is an important first step in understanding and handling more complex label noise in practice.
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