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While ML has 
made great strides 
in recent years, 
ML still has many 
issues
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Large language models could compound historical bias against 
minorities

Autonomous driving systems could cause loss of life when 
exposed to unexpected conditions

Medical ML systems could recommend fatal treatments based 
on false counterfactual prediction

Scientists may make incorrect scientific conclusions based on 
black-box models



The next 
generation of  
trustworthy ML 
will need to 
exhibit 
properties 
beyond accuracy
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Group Fairness – Are the predictions fair 
w.r.t. age or race?

Robustness – Are the predictions accurate 
even in new environments?

Causality – Can counterfactual queries be 
correctly estimated?

Explainability – Can distribution shifts be 
explained?



Fair classification example: 
Optimize performance given fairness constraint
• Let 𝑓 be a classification model and let 𝑥, 𝑦, 𝑑, and	 *𝑦 ≡ 𝑓 𝑥  be the input, label, 

sensitive attribute, and model’s prediction respectively
• Let 𝑝! 𝑥, 𝑦, 𝑑, *𝑦  denote the joint distribution over all variables
• Demographic parity (DP) difference measures the difference between the 

prediction probability between groups

Δ"# 𝑓 = 𝑝! *𝑦$% 𝑑$% − 𝑝! *𝑦$% 𝑑$&

• Fair classification w.r.t. DP can be formalized as a task objective subject to a fairness 
constraint:

min
!
	 ℒ 𝑓 ≡ 𝔼' (,* ℓ 𝑓 𝑥 , 𝑦

s. t. 	 Δ"# 𝑓 ≤ 𝛿
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The fairness constraint can be satisfied via 
distribution matching
• First, notice that Δ!" 𝑓  is total variation distance

Δ!" 𝑓 = 𝐷#$ 𝑝% &𝑦 𝑑&' , 𝑝% &𝑦 𝑑&( ≤ 𝛿
• This is a distribution matching constraint on 𝑝 "𝑦 𝑑 !

• In practice, the model is often decomposed into feature extraction followed by a classifier head 𝑓)*+
𝑓 𝑥, 𝑑 = 𝑓)*+ 𝑔 𝑥, 𝑑

• where 𝑧 = 𝑔(𝑥, 𝑑) is a latent representation
• The task loss can be written in terms of 𝑔, i.e., ℒ 𝑔 = min

!!"#
	𝔼" #,% ℓ 𝑓&'( 𝑔 𝑥, 𝑑 , 𝑦

• To ensure DP fairness, a sufficient condition is to ensure the latent TV distance is small 
(due to data processing inequality for f-divergences)

𝐷#$ 𝑝% &𝑦 𝑑&' , 𝑝% &𝑦 𝑑&( ≤ 𝐷#$ 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&( ≤ 𝛿
• This is a distribution matching constraint on 𝑝) 𝑧 𝑑 !
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Distribution matching for trustworthy ML 
takes the form of (soft) task constraints

David I. Inouye, Purdue University
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Definition 1: Given a task objective ℒ 𝑔 , a distribution matching constraint imposes matching on the 
latent representation 𝑧 ≔ 𝑔 𝑥, 𝑑, 𝜖 , where 𝑔 ∈ 𝔾 is called a matcher and 𝐷 𝑝, 𝑞  is a divergence:

min
,∈𝔾

	 ℒ 𝑔  

s. t. 	 𝐷 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&( ≤ 𝛿 

min
,∈𝔾

	 ℒ 𝑔 + 𝜆𝐷 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&(

Hard DM constraint: Soft DM constraint (i.e., regularization):

Learn a rotation + 1D projection so that 𝑝! 𝑧"|𝑑  is aligned

𝑥$ 

𝑥% 

𝑧$ 

𝑧% 

Learn 2D 𝑔 such that 𝑝 𝑧", 𝑧# 𝑑  is aligned where 
the red distribution is fixed, i.e., 𝑔(𝑥, 2) = 𝑥



A matcher can have different structures 𝔾 
depending on the context
• Translation matcher, i.e., 𝑔 𝒙, 𝑑 = < 𝒙, if	𝑑 = 1

?𝑔 𝒙 , otherwise

• Shared matcher between domains, i.e., 𝑔 𝒙, 𝑑 = ?𝑔 𝒙

• Invertible matcher, i.e., ∃𝑔5%	s. t. 	∀𝒙, 𝑔5% 𝑔 𝒙, 𝑑 , 𝑑 = 𝒙
• Approximately invertible  via cycle consistency ∃𝑓	s. t. 	∀𝒙,
𝑓 𝑔 𝒙, 𝑑 , 𝑑 ≈ 𝒙

• Stochastic matcher, i.e., 𝑔 𝑥, 𝑑, 𝜖 , where 𝜖 is exogenous 
noise.

David I. Inouye, Purdue University
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𝑥$ 

𝑥% 

𝑧$ 

𝑧% 

Translation matcher (unsupervised)

Shared matcher



Distribution 
matching 
has been 
known by 
other names
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Distribution alignment

(Domain-)Invariant representation 
learning 

Adversarial representation learning

Mutual information minimization



Can we generalize distribution matching to 
conditional distributions?
• Yes! But we need a notion of conditional divergence.

• Any divergence 𝐷 can be extended via an expectation over some "𝑝 𝑧ℬ  

𝐷𝒜|ℬ𝔼 𝑝, 𝑞 := 𝔼 FG Hℬ 𝐷 𝑝 𝑧𝒜 𝑧ℬ , 𝑞 𝑧𝒜 𝑧ℬ
 

• A conditional divergence allows the marginals of 𝑧ℬ to be different

David I. Inouye, Purdue University
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Definition 2: Given index sets 𝒜,ℬ ⊆ 1,2, … ,𝑚 , a conditional divergence 𝐷𝒜|ℬ 𝑝, 𝑞  is a function that 
satisfies two properties:

1. Non-negativity, i.e., 𝐷𝒜|ℬ 𝑝, 𝑞 ≥ 0.

2. Conditional distribution equality, i.e., 𝐷𝒜|ℬ 𝑝, 𝑞 = 0	 ⇔ 	 𝑝 𝑧𝒜 𝑧ℬ = 𝑞 𝑧𝒜 𝑧ℬ , ∀𝑧ℬ



Conditional distribution matching is much less 
explored but is more general

David I. Inouye, Purdue University
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Definition 3: Given a task objective ℒ 𝑔 , a conditional matching constraint imposes matching on latent 
conditional distributions given a conditional divergence 𝐷𝒜|ℬ:

min
,∈𝔾

	 ℒ 𝑔  

s. t. 	 𝐷𝒜|ℬ 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&( ≤ 𝛿 

min
,∈𝔾

	 ℒ 𝑔 + 𝜆𝐷𝒜|ℬ 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&(

Hard DM constraint: Soft DM constraint (i.e., regularization):

Learn a rotation + 1D projection so that 𝑝! 𝑧#|𝑧", 𝑑  is aligned Learn 2D 𝑔 such that 𝑝 𝑧# 𝑧", 𝑑  is aligned where 
the red distribution is fixed, i.e., 𝑔(𝑥, 2) = 𝑥

𝑥$ 

𝑥% 𝑧% 



Conditional distribution matching is much less 
explored but is more general

David I. Inouye, Purdue University
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Definition 3: Given a task objective ℒ 𝑔 , a conditional matching constraint imposes matching on latent 
conditional distributions given a conditional divergence 𝐷𝒜|ℬ:

min
,∈𝔾

	 ℒ 𝑔  

s. t. 	 𝐷𝒜|ℬ 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&( ≤ 𝛿 

min
,∈𝔾

	 ℒ 𝑔 + 𝜆𝐷𝒜|ℬ 𝑝, 𝑧 𝑑&' , 𝑝, 𝑧 𝑑&(

Hard DM constraint: Soft DM constraint (i.e., regularization):

Matching the binary class probability given a single latent feature 𝒑 𝒚 8𝒛, 𝒅
• In this case, 𝑧 ≡ 𝑦, �̃�  and 𝒜 = 1 , ℬ = 2
• For every value of  �̃� the positive class probability 𝑝 𝑦 = 1 �̃�, 𝑑  must match
• (This is related to Invariant Risk Minimization, IRM)

�̃��̃��̃�

𝑝 𝑦 = 1 𝑧, 𝑑 𝑝 𝑦 = 1 𝑧, 𝑑 𝑝 𝑦 = 1 𝑧, 𝑑
Matched J Mismatched L Partially matched K



Many group fairness measures can be described 
as distribution matching constraints

• In this case, the latent representation is merely the prediction (𝑧 ≡ +𝑦) and 
the matcher is merely the predictor (𝑔 ≡ 𝑓)

David I. Inouye, Purdue University
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𝑝 A𝑦 𝑑

𝑝 A𝑦 𝑦, 𝑑

𝑝 A𝑦 𝑥", 𝑑 𝑝 A𝑦 𝑥", 𝑥#, 𝑑 𝑝 A𝑦 𝑥", … , 𝑥$, 𝑑

𝑝 A𝑦 𝑦, 𝑥", 𝑑 𝑝 A𝑦 𝑦, 𝑥", … , 𝑥$	, 𝑑⋯

⋯

Equalized odds
Demographic 

parity

Conditional Demographic Parity

Conditional equalized odds

Marginal Matching Conditional Matching

𝑝 𝑦 A𝑦, 𝑑
Sufficiency



Fair classification is one of  the trustworthy ML 
applications via distribution matching

David I. Inouye, Purdue University
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Applica'on Method Task Loss Distribution to Match Matcher Structure

Fair Classification
Fair VAE

Classification 
loss 𝑝!(𝑧|𝑑)

Stochastic
Adversarially Fair Shared
Fair Flows Invertible

Domain 
Generalization

DANN
Classification 
loss

𝑝!(𝑧|𝑑) Shared
CDANN 𝑝!(𝑧|𝑦, 𝑑) Shared
IRM 𝑝!(𝑦|𝑧, 𝑑) Shared
Fishr 𝑝!(∇&ℒ& 𝑥 |𝑑) Implicit

Causality

CATE Factual risk 𝑝!(𝑧|𝑑) Invertible
ICP n/a 𝑝!(𝑦|𝑧'( ) , 𝑑) Permutation
Domain 
Counterfactuals

NLL 𝑝! 𝑧* 𝑧+* , 𝑑
∀𝑖	not	intervened

Shared

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝!(𝑧|𝑑) Sparse

Interpretable transport Transport Cost 𝑝!(𝑧|𝑑) Sparse or cluster

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]



Many DG methods can be viewed as matching 
different latent distributions

David I. Inouye, Purdue University
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Application Method Task Loss Distribution to Match Matcher Structure

Fair Classification
Fair VAE

Classification 
loss 𝑝!(𝑧|𝑑)

Stochastic
Adversarially Fair Shared
Fair Flows Invertible

Domain 
Generalization

DANN
Classification 
loss

𝑝!(𝑧|𝑑) Shared
CDANN 𝑝!(𝑧|𝑦, 𝑑) Shared
IRM 𝑝!(𝑦|𝑧, 𝑑) Shared
Fishr 𝑝!(∇&ℒ& 𝑥 |𝑑) Implicit

Causality

CATE Factual risk 𝑝!(𝑧|𝑑) Invertible
ICP n/a 𝑝!(𝑦|𝑧'( ) , 𝑑) Permutation
Domain 
Counterfactuals

NLL 𝑝! 𝑧* 𝑧+* , 𝑑
∀𝑖	not	intervened

Shared

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝!(𝑧|𝑑) Sparse

Interpretable transport Transport Cost 𝑝!(𝑧|𝑑) Sparse or cluster

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]



Causal ML methods have 
different task losses than classification

David I. Inouye, Purdue University
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Application Method Task Loss Distribution to Match Matcher Structure

Fair Classification
Fair VAE

Classification 
loss 𝑝!(𝑧|𝑑)

Stochastic
Adversarially Fair Shared
Fair Flows Invertible

Domain 
Generalization

DANN
Classification 
loss

𝑝!(𝑧|𝑑) Shared
CDANN 𝑝!(𝑧|𝑦, 𝑑) Shared
IRM 𝑝!(𝑦|𝑧, 𝑑) Shared
Fishr 𝑝!(∇&ℒ& 𝑥 |𝑑) Implicit

Causality

CATE Factual risk 𝑝!(𝑧|𝑑) Invertible
ICP n/a 𝑝!(𝑦|𝑧'( ) , 𝑑) Permutation
Domain 
Counterfactuals

NLL 𝑝! 𝑧* 𝑧+* , 𝑑
∀𝑖	not	intervened

Shared

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝!(𝑧|𝑑) Sparse

Interpretable transport Transport Cost 𝑝!(𝑧|𝑑) Sparse or cluster

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]



Explaining distribution shifts can be cast as 
finding an interpretable matcher

David I. Inouye, Purdue University
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Application Method Task Loss Distribution to Match Matcher Structure

Fair Classification
Fair VAE

Classification 
loss 𝑝!(𝑧|𝑑)

Stochastic
Adversarially Fair Shared
Fair Flows Invertible

Domain 
Generalization

DANN
Classification 
loss

𝑝!(𝑧|𝑑) Shared
CDANN 𝑝!(𝑧|𝑦, 𝑑) Shared
IRM 𝑝!(𝑦|𝑧, 𝑑) Shared
Fishr 𝑝!(∇&ℒ& 𝑥 |𝑑) Implicit

Causality

CATE Factual risk 𝑝!(𝑧|𝑑) Invertible
ICP n/a 𝑝!(𝑦|𝑧'( ) , 𝑑) Permutation
Domain 
Counterfactuals

NLL 𝑝! 𝑧* 𝑧+* , 𝑑
∀𝑖	not	intervened

Shared

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝!(𝑧|𝑑) Sparse, translation

Interpretable transport Transport Cost 𝑝!(𝑧|𝑑) Sparse or cluster, translat.

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]



Some analogies to summarize
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Classification is to current ML
as

is to trustworthy ML
No, doesn’t solve fundamental issues

David I. Inouye, Purdue University
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scaling data or models?



Classification is to current ML
as

is to trustworthy ML
No, it is not as broadly applicable as classification is to many different problems

David I. Inouye, Purdue University
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application-specific design?



Classification is to current ML
as

is to trustworthy ML
In contrast to scaling, it is fundamentally different from classification
In contrast to application-specific design, it is broadly applicable to many tasks

David I. Inouye, Purdue University
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distribution matching



Why could distribution matching 
be an enabling tool for 
trustworthy ML?
Two analogies: One fun, the other more technical

David I. Inouye, Purdue University
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Classification is to Tigger
as
distribution matching is to ______
Optimism – Pessimism

David I. Inouye, Purdue University
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Eeyore



Classification is to task objective
as
distribution matching is to ____________
Positive goal – Negative constraint
Performance – Safety 

David I. Inouye, Purdue University
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task constraints



Why could distribution matching be 
broadly applicable?

David I. Inouye, Purdue University
25



Class labels are to classification
as

are to distribution matching
Data-driven
Easier to elicit from experts than formal definitions
Generic algorithms

David I. Inouye, Purdue University
26

domain labels



What is distribution matching?

David I. Inouye, Purdue University
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Divergence maximization is to classification
as

is to distribution matching

David I. Inouye, Purdue University
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divergence minimization



Distribution matching is representation learning 
with the opposite objective of classification

Original Space

𝑥( 

𝑝 𝒙|𝑑$%

𝑝 𝒙|𝑑$&
𝑥' 

Representation Learning Objective Latent Space

𝑔∗ 𝑥 = 𝑧34566∗ → max
Q∈𝔾

𝐷 𝑝 𝑔 𝑥 𝑑$% , 𝑝 𝑔 𝑥 𝑑$&
Classification

where 𝑔:ℝ( → ℝ and 𝐷 is a distribution 
divergence (e.g., KL, JSD, 𝑊()

min
Q∈𝔾

𝐷 𝑝 𝑔 𝑥 𝑑$% , 𝑝 𝑔 𝑥 𝑑$&
𝑔∗ 𝑥 = 𝑧54789∗ → 

Optimal solution 
𝑝 𝑔∗ 𝑥 |𝑑&' = 𝑝 𝑔∗ 𝑥 |𝑑&(

Distribution matching

29
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Yet, prior 
distribution 
matching 
research lacks 
a unified 
scientific 
framework

• Much prior work focuses specific applications 
(e.g., fairness or domain adaptation)
• This stems from the fact that DM is rarely useful 

by itself
• But DM is a much broader tool

• Other works only consider one algorithm (e.g., 
adversarial)
• But there are diverse non-adversarial approaches

• DM has rarely been investigated in its own 
right

David I. Inouye, Purdue University 30



I aim to unify 
distribution 
matching under 
a common 
framework for 
trustworthy ML 
problems

David I. Inouye, Purdue University 31

Fundamentals 

Applications

Algorithms

Evaluation

(Already covered)

(Already covered)



Algorithms:
How do we enforce distribution 
matching in practice?

David I. Inouye, Purdue University
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Matching algorithms fall into three different categories depending 
on how they estimate the theoretic divergence

• Adversarial matching (GAN)
• First and continues to be the most popular approach to matching
• Easy to implement, just add a discriminator for the domain
• No restriction on model architectures
• Challenging to optimize in practice
• Hard to evaluate solution

• Likelihood-based algorithms (flows ⭐ [Cho et al. 2022] and VAEs ⭐ [Gong et al. 2023])
• Less well-known
• Non-adversarial so more stable to optimize
• Flow-based algorithms requires invertible model
• VAE-based algorithms usually enforce fixed prior distribution

• Other algorithms
• Optimal transport algorithms
• Statistical conditional independence tests
• Iterative matching ⭐ [Zhou et al., 2022a,b]

David I. Inouye, Purdue University
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Many matching algorithms form variational 
approximation of divergences

Adversarial / Lower Bound
min
Q
max
T

𝐷 𝑝Q 𝑧 𝑑$% , 𝑝Q 𝑧 𝑑$& ; ℎ

• Variational maximization problem over 
critic ℎ 𝑧  forms a lower bound on a 
divergence

• Different choices of approximation 
yield lower bounds on JSD, 
Wasserstein, 𝑓-divergences

Likelihood / Upper Bound
min
Q
min
U

𝐷 𝑝Q 𝑧 𝑑$% , 𝑝Q 𝑧 𝑑$& ; 𝑞

• Variational minimization problem over 
variational distribution 𝑞 forms an 
upper bound on a divergence

• We generalize flow-based methods for 
upper bounds ⭐ [Cho et al., 2022]

• We revisit VAE-based methods for 
upper bounds ⭐  [Gong et al., 2023]

David I. Inouye, Purdue University
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https://arxiv.org/abs/2207.02286


Alignment Upper Bound (AUB) forms an upper 
bound on JS divergence via invertible models
• A variational upper bound of  JSD:

𝐷:;< 𝑔 = min
= >

∑?&'@ 𝔼A 𝑥 𝑑 −log 𝐽, 𝑥, 𝑑 𝑞 𝑔 𝑥, 𝑑

• 𝑞 𝑧 	is a prior density model shared among domains
• 𝑔 𝑥, 𝑑  is invertible w.r.t 𝑥 and 𝐽! 𝑥, 𝑑  is the 

determinant Jacobian of  𝑔 w.r.t. 𝑥

• Bound gap is exactly 𝐾𝐿 𝑝! 𝑧 , 𝑞 𝑧

• Any 𝑞 provides an upper bound on JSD + const

35Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 
Information Processing Systems (NeurIPS). Preprint: https://arxiv.org/abs/2207.02286 David I. Inouye, Purdue University

AUB

GJSD

gap

𝐾𝐿 𝑝, 𝑧 , 𝑞 𝑧 	

−∑? 𝑝 𝑑 𝐻A 𝑥|𝑑  

(≥ 0)

(constant w.rt. 𝑔)

https://arxiv.org/abs/2207.02286


AUB optimization provides a cooperative 
alternative to adversarial matching

• Minimizing 𝑔 makes distributions closer to current 𝑞 (left)
• Minimizing 𝑞 𝑧  tightens bound by getting closer to the latent mixture 
𝑝 𝑧 = ∑^ 𝑝 𝑑 𝑝 𝑧 𝑑  (right)

36

!(x  d=1) !( (x, 1) d=1) ( (x, ) d= )

 (x , 1)
# #

!'! !'"

(a) (b)

 (x , )

!(x  d= )

AUB cooperative matching problem
 min
,

min
= >

∑B&'@ 𝔼A 𝒙 𝑑 log 𝐽, 𝑥, 𝑑 𝑞 𝑔 𝑥, 𝑑

Cho, W., Gong, Z., & Inouye, D. I. (2022). Cooperative Distribution Alignment via JSD Upper Bound. Accepted to Neural 
Information Processing Systems (NeurIPS). Preprint: https://arxiv.org/abs/2207.02286 David I. Inouye, Purdue University

https://arxiv.org/abs/2207.02286


The invertibility assumption can be relaxed 
via a decoder and reconstruction loss

• The Jacobian term can be relaxed by using the ratio of decoder to encoder

𝐽! 𝑥, 𝑑 ⇔
𝑞 𝑥 𝑧, 𝑑
𝑝! 𝑧 𝑥, 𝑑

• To encourage approximate invertibility of 𝑔, we can include a reconstruction 
regularization which simplifies to a 𝛽-VAE objective with 𝛽 ≤ 1

David I. Inouye, Purdue University
37Gong, Z., Usman, B., Zhao, H., & Inouye, D. I. (2023). Towards Practical Non-Adversarial Distribution Alignment via 

Variational Bounds. arXiv preprint arXiv:2310.19690.



Adding noise to JSD can reduce vanishing 
gradient and local minimum problems

David I. Inouye, Purdue University
38Gong, Z., Usman, B., Zhao, H., & Inouye, D. I. (2023). Towards Practical Non-Adversarial Distribution Alignment via 
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Iterative matching flows iteratively solve 1D 
matching problems to create deep matcher
1. Find 1D projection that is maximally mismatched

max
V
	 𝑊& 𝑝 𝜃W𝑥 𝑑$% , 𝑝 𝜃W𝑥 𝑑$&

2. Match along this 1D projection by mapping to barycenter distribution 

min
8Q
	𝔼'( 8($V*(,X) ?𝑔 ?𝑥, 𝑑 − ?𝑥 &

s. t. 	 𝐷 𝑝 F𝑔 F𝑥, 1 𝑑&' , 𝑝 F𝑔 F𝑥, 2 𝑑&( = 0
3. Update global matcher (add one layer) and repeat

𝑔 𝑥, 𝑑 = ?𝑔 𝜃W𝑥, 𝑑 𝜃 + 𝑥V
Y

𝑔Z[\]^[
_`a = 𝑔 ∘ 𝑔Z[\]^[

\[b

	𝑥cde = 𝑔 𝑥

39Zhou, Z., Gong, Z., Ravikumar, P., & Inouye, D. I. (2022, May). Iterative Alignment Flows. In International Conference on 
Artificial Intelligence and Statistics (AISTATS). https://proceedings.mlr.press/v151/zhou22b/zhou22b.pdf David I. Inouye, Purdue University

A projection-pursuit 
type of algorithm

https://proceedings.mlr.press/v151/zhou22b/zhou22b.pdf


Our framework shows the many different 
algorithms applied to distribution matching

David I. Inouye, Purdue University
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Applica'on Method Task Loss Distribution to align Aligner Structure Algorithm

Fair Classific.
Fair VAE

ERM 𝑝&(𝑧|𝑑)
Stochastic VAE-based

Adversarially Fair Shared Adversarial
Fair Flows Invertible Flow-based

Domain Generaliz.

DANN

ERM

𝑝&(𝑧|𝑑) Shared Adversarial
CDANN 𝑝&(𝑧|𝑦, 𝑑) Shared Adversarial
IRM 𝑝&(𝑦|𝑧, 𝑑) Shared Bi-level optimization
Fishr 𝑝&(∇'ℒ' 𝑥 |𝑑) Implicit Gradient variance regularization

Causality

CATE Factual risk 𝑝&(𝑧|𝑑) Invertible Integral prob. metric minimization

ICP n/a 𝑝&(𝑦|𝑧() * , 𝑑) Permutation Statistical Indep. Tests
Domain 
Counterfactuals

NLL 𝑝& 𝑧+ 𝑧,+ , 𝑑
∀𝑖	not	intervened

Shared Generative model

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝&(𝑧|𝑑) Sparse Sinkhorn algorithm

Interpretable transport Transport Cost 𝑝&(𝑧|𝑑) Sparse or cluster Post-process empirical OT

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]



Classification is to complexity upper bounds
as
distribution matching is to complexity ____________
𝑃 ≠ 𝑁𝑃? - Easy to construct exponential alg. but nearly impossible to prove lower bound.
Classification - Constructing one classifier that works is like proving a complexity upper bound 
DM - Ensuring that no classifier can work is like proving a complexity lower bound

David I. Inouye, Purdue University
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lower bounds



Evaluation:
How do we evaluate DM?

David I. Inouye, Purdue University
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Distribution matching evaluation requires 
comparing sets in high dimensions
• Classification metric - Empirical average over point-wise distances/losses 
ℓ 0𝑦, 𝑦

𝐿346 𝑓, 𝑝 𝑥, 𝑦 ≈
1
𝑛*
C&'

D

ℓ 𝑓 𝑥C , 𝑦C

• Distribution matching objective – Must compute set-wise distance

𝐿EF 𝑔, 𝑝 𝑥, 𝑑 = 𝐷 𝑝 𝑔 𝑥 |𝑑&' , 𝑝 𝑔 𝑥 |𝑑&( ≈ 1𝐷 𝑧C
'

C&'

D,
, 𝑧C

(
C&'

D-
=	?

• Where -𝐷 is a set-wise distance function that approximates the true divergence 𝐷 given 
only samples

David I. Inouye, Purdue University
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Current DM evaluation methods are diverse 
with varied strengths and weaknesses
1. Qualitative

• Easy to inspect images or 2D visualization
• Subjective and unsystematic

2. Two-sample test statistics
• Examples: Demographic parity in fairness, FID in image generation models
• Often simple to compute
• Usually, necessary but not sufficient condition for match

(e.g., two distributions can have the same mean and covariance but be quite different)

3. Empirical optimal transport
• Wasserstein divergence is well-defined for empirical distributions (i.e., comparing samples directly)
• Can be computed efficiently for empirical distributions via Sinkhorn algorithm or for 1D distributions via sorting
• Strongly depends on the geometry of latent space
• May not scale to high dimensions since non-parametric

4. Variational bounds on divergences
• Lower bounds – Inner maximization of adversarial methods
• Upper bounds – Inner minimization of likelihood-based methods
• May scale better in high dimensions since parametric
• Looseness of bounds is hard to estimate or quantify

David I. Inouye, Purdue University
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DM metrics can be unified 
under these four categories

David I. Inouye, Purdue University
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Distribution Matching Metric Category Bound
Compare images Qualitative

t-SNE plot Qualitative

Demographic parity in fairness Two-sample statistic

Frechet Inception Distance (FID) Two-sample statistic

Maximum Mean Discrepancy (MMD) Two-sample statistic

Entropic-regularized discrete OT Empirical OT

Sliced Wasserstein distance Empirical OT

f-divergence adversarial loss Variational Lower

Wasserstein adversarial loss Variational Lower

Flow-based likelihood loss Variational Upper

VAE-based likelihood loss Variational Upper



Classifier metrics are to comparing points
as
distribution matching metrics are to _____________
Easy - Classification accuracy is an average over point-wise distances
Hard - DM evaluation must compute a set-wise distance in high dimensional space 

David I. Inouye, Purdue University
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comparing sets



Conjecture: Variational bounds 
hold the most promise long-term.
Optimization-based metrics can leverage advances in (1) model architectures, (2) 
computational power, and (2) optimization, while other metrics do not benefit from 
these advancements.

David I. Inouye, Purdue University
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Future research opportunities in all areas of  
distribution matching

• Conditional matching in particular
Matching 

fundamentals
• Causal representation learning
• Domain generalization
• Fair clustering?

Matching 
applications

• Stable and scalable non-adversarial methods
Matching 
algorithms

• More application-agnostic measures
• Rigorous evaluation protocols

Matching 
evaluation



Thanks for listening! Any questions?

David I. Inouye, Purdue University
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Application Method Task Loss Distribution to align Aligner Structure Algorithm

Fair Classific.
Fair VAE

ERM 𝑝&(𝑧|𝑑)
Stochastic VAE-based

Adversarially Fair Shared Adversarial
Fair Flows Invertible Flow-based

Domain Generaliz.

DANN

ERM

𝑝&(𝑧|𝑑) Shared Adversarial
CDANN 𝑝&(𝑧|𝑦, 𝑑) Shared Adversarial
IRM 𝑝&(𝑦|𝑧, 𝑑) Shared Bi-level optimization
Fishr 𝑝&(∇'ℒ' 𝑥 |𝑑) Implicit Gradient variance regularization

Causality

CATE Factual risk 𝑝&(𝑧|𝑑) Invertible Integral prob. metric minimization

ICP n/a 𝑝&(𝑦|𝑧() * , 𝑑) Permutation Statistical Indep. Tests
Domain 
Counterfactuals

NLL 𝑝& 𝑧+ 𝑧,+ , 𝑑
∀𝑖	not	intervened

Shared Generative model

Dist. Shift 
Explanations

Sparse transport Reg. Transport 
Cost

𝑝&(𝑧|𝑑) Sparse Sinkhorn algorithm

Interpretable transport Transport Cost 𝑝&(𝑧|𝑑) Sparse or cluster Post-process empirical OT

⭐ [Bai et al., 2023]

⭐ [Kulinski et al., 2023]

⭐ [Kulinski & Inouye, 2023]
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